{"title":"Measuring thermal conductivity of frozen soil using fiber optic sensors","authors":"Bing Wu, Hong-hu Zhu, Cao Dingfeng","doi":"10.32523/2616-7263-2021-135-2-82-93","DOIUrl":null,"url":null,"abstract":"The thermal conductivity is crucial for determining heat transfer in frozen soil. However, it is a challenge to obtain accurate measurement values due to the instability of soil properties. Recently, the fiber optic sensing technologies has enabled accurate and distributed in-situ monitoring of a variety of geotechnical parameters. This paper aims to explore the feasibility of actively heated fiber Bragg grating (AH-FBG) method in measuring thermal conductivity of frozen soil. A series of laboratory experiments were performed on frozen soil samples at different initial temperatures from −16 to 5 ℃. The theoretical upper and lower limits of thermal conductivity were used to evaluate the AHFBG measurements. The thermal conductivity recorded by a heat transfer analyzer was used to identify the measurement accuracy. The experimental results that the AH-FBG method can accurately measure the thermal conductivity of frozen soil when the initial temperature is below −6 ℃, and the measurement error is within acceptable range of 0.8%. When the soil temperature is between −6 and 0 ℃, significant measurement errors were observed due to the disturbance of heating to the frozen soil.","PeriodicalId":168248,"journal":{"name":"BULLETIN of L.N. Gumilyov Eurasian National University. Technical Science and Technology Series","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BULLETIN of L.N. Gumilyov Eurasian National University. Technical Science and Technology Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2616-7263-2021-135-2-82-93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The thermal conductivity is crucial for determining heat transfer in frozen soil. However, it is a challenge to obtain accurate measurement values due to the instability of soil properties. Recently, the fiber optic sensing technologies has enabled accurate and distributed in-situ monitoring of a variety of geotechnical parameters. This paper aims to explore the feasibility of actively heated fiber Bragg grating (AH-FBG) method in measuring thermal conductivity of frozen soil. A series of laboratory experiments were performed on frozen soil samples at different initial temperatures from −16 to 5 ℃. The theoretical upper and lower limits of thermal conductivity were used to evaluate the AHFBG measurements. The thermal conductivity recorded by a heat transfer analyzer was used to identify the measurement accuracy. The experimental results that the AH-FBG method can accurately measure the thermal conductivity of frozen soil when the initial temperature is below −6 ℃, and the measurement error is within acceptable range of 0.8%. When the soil temperature is between −6 and 0 ℃, significant measurement errors were observed due to the disturbance of heating to the frozen soil.