A gaze-contingent intention decoding engine for human augmentation

Pavel Orlov, A. Shafti, C. Auepanwiriyakul, Noyan Songur, A. Faisal
{"title":"A gaze-contingent intention decoding engine for human augmentation","authors":"Pavel Orlov, A. Shafti, C. Auepanwiriyakul, Noyan Songur, A. Faisal","doi":"10.1145/3204493.3208350","DOIUrl":null,"url":null,"abstract":"Humans process high volumes of visual information to perform everyday tasks. In a reaching task, the brain estimates the distance and position of the object of interest, to reach for it. Having a grasp intention in mind, human eye-movements produce specific relevant patterns. Our Gaze-Contingent Intention Decoding Engine uses eye-movement data and gaze-point position to indicate the hidden intention. We detect the object of interest using deep convolution neural networks and estimate its position in a physical space using 3D gaze vectors. Then we trigger the possible actions from an action grammar database to perform an assistive movement of the robotic arm, improving action performance in physically disabled people. This document is a short report to accompany the Gaze-contingent Intention Decoding Engine demonstrator, providing details of the setup used and results obtained.","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3208350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Humans process high volumes of visual information to perform everyday tasks. In a reaching task, the brain estimates the distance and position of the object of interest, to reach for it. Having a grasp intention in mind, human eye-movements produce specific relevant patterns. Our Gaze-Contingent Intention Decoding Engine uses eye-movement data and gaze-point position to indicate the hidden intention. We detect the object of interest using deep convolution neural networks and estimate its position in a physical space using 3D gaze vectors. Then we trigger the possible actions from an action grammar database to perform an assistive movement of the robotic arm, improving action performance in physically disabled people. This document is a short report to accompany the Gaze-contingent Intention Decoding Engine demonstrator, providing details of the setup used and results obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于人类增强的注视偶然意图解码引擎
人类处理大量的视觉信息来完成日常任务。在伸手任务中,大脑估计感兴趣的物体的距离和位置,然后伸手去够它。有了抓握的意图,人类的眼球运动就会产生特定的相关模式。我们的注视-偶然意图解码引擎使用眼球运动数据和注视点位置来指示隐藏的意图。我们使用深度卷积神经网络检测感兴趣的对象,并使用3D凝视向量估计其在物理空间中的位置。然后我们从动作语法数据库中触发可能的动作来执行机械臂的辅助运动,从而提高身体残疾人士的动作表现。本文档是一份简短的报告,附带了注视偶然意图解码引擎演示,提供了使用的设置和获得的结果的详细信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating gender difference on algorithmic problems using eye-tracker Eyemic Gaze patterns during remote presentations while listening and speaking An investigation of the effects of n-gram length in scanpath analysis for eye-tracking research Towards concise gaze sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1