The Archimedean trap: Why traditional reinforcement learning will probably not yield AGI

S. Alexander
{"title":"The Archimedean trap: Why traditional reinforcement learning will probably not yield AGI","authors":"S. Alexander","doi":"10.2478/jagi-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract After generalizing the Archimedean property of real numbers in such a way as to make it adaptable to non-numeric structures, we demonstrate that the real numbers cannot be used to accurately measure non-Archimedean structures. We argue that, since an agent with Artificial General Intelligence (AGI) should have no problem engaging in tasks that inherently involve non-Archimedean rewards, and since traditional reinforcement learning rewards are real numbers, therefore traditional reinforcement learning probably will not lead to AGI. We indicate two possible ways traditional reinforcement learning could be altered to remove this roadblock.","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jagi-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract After generalizing the Archimedean property of real numbers in such a way as to make it adaptable to non-numeric structures, we demonstrate that the real numbers cannot be used to accurately measure non-Archimedean structures. We argue that, since an agent with Artificial General Intelligence (AGI) should have no problem engaging in tasks that inherently involve non-Archimedean rewards, and since traditional reinforcement learning rewards are real numbers, therefore traditional reinforcement learning probably will not lead to AGI. We indicate two possible ways traditional reinforcement learning could be altered to remove this roadblock.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿基米德陷阱:为什么传统的强化学习可能不会产生AGI
摘要将实数的阿基米德性质推广到适用于非数值结构,证明了实数不能用于精确测量非阿基米德结构。我们认为,由于具有人工通用智能(AGI)的智能体在从事本质上涉及非阿基米德奖励的任务时应该没有问题,并且由于传统的强化学习奖励是实数,因此传统的强化学习可能不会导致AGI。我们指出了两种可能的方法来改变传统的强化学习来消除这个障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy Networks for Modeling Shared Semantic Knowledge Extending Environments to Measure Self-reflection in Reinforcement Learning Measuring Intelligence and Growth Rate: Variations on Hibbard’s Intelligence Measure Feature Reinforcement Learning: Part II. Structured MDPs The Synthesis and Decoding of Meaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1