{"title":"Feature Reinforcement Learning: Part II. Structured MDPs","authors":"Marcus Hutter","doi":"10.2478/jagi-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract The Feature Markov Decision Processes ( MDPs) model developed in Part I (Hutter, 2009b) is well-suited for learning agents in general environments. Nevertheless, unstructured (Φ)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend ΦMDP to ΦDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the “best” DBN representation. I discuss all building blocks required for a complete general learning algorithm, and compare the novel ΦDBN model to the prevalent POMDP approach.","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jagi-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Feature Markov Decision Processes ( MDPs) model developed in Part I (Hutter, 2009b) is well-suited for learning agents in general environments. Nevertheless, unstructured (Φ)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend ΦMDP to ΦDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the “best” DBN representation. I discuss all building blocks required for a complete general learning algorithm, and compare the novel ΦDBN model to the prevalent POMDP approach.