Novel DCT based feature extraction for enhanced Iris Recognition

Abhiram M H Student, Chetan Sadhu, K. Manikantan, S. Ramachandran
{"title":"Novel DCT based feature extraction for enhanced Iris Recognition","authors":"Abhiram M H Student, Chetan Sadhu, K. Manikantan, S. Ramachandran","doi":"10.1109/ICCICT.2012.6398164","DOIUrl":null,"url":null,"abstract":"Iris recognition (IR) under varying live-tissues is challenging, and extracting tissue edge features is an effective approach to solve this problem. In this paper, we propose a unique combination of edge detection plus DCT based feature extraction for enhanced Iris Recognition. Two novel methods, namely circular sector and triangular shaped DCT feature extraction techniques are proposed. Individual stages of the IR system are examined and an attempt is made to improve each stage. A Binary Particle Swarm Optimization (BPSO)-based feature selection algorithm is used to search the feature vector space for obtaining the optimal feature subset. Experimental results show the promising performance of circular sector DCT extraction for iris recognition on Phoenix, MMU, IITD databases.","PeriodicalId":319467,"journal":{"name":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICT.2012.6398164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Iris recognition (IR) under varying live-tissues is challenging, and extracting tissue edge features is an effective approach to solve this problem. In this paper, we propose a unique combination of edge detection plus DCT based feature extraction for enhanced Iris Recognition. Two novel methods, namely circular sector and triangular shaped DCT feature extraction techniques are proposed. Individual stages of the IR system are examined and an attempt is made to improve each stage. A Binary Particle Swarm Optimization (BPSO)-based feature selection algorithm is used to search the feature vector space for obtaining the optimal feature subset. Experimental results show the promising performance of circular sector DCT extraction for iris recognition on Phoenix, MMU, IITD databases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DCT的虹膜特征提取方法
不同活组织下的虹膜识别具有挑战性,而组织边缘特征提取是解决这一问题的有效方法。在本文中,我们提出了一种独特的结合边缘检测和基于DCT的特征提取来增强虹膜识别。提出了两种新的DCT特征提取方法,即圆形扇形和三角形特征提取技术。研究了红外系统的各个阶段,并尝试对每个阶段进行改进。采用基于二进制粒子群优化(BPSO)的特征选择算法对特征向量空间进行搜索,得到最优特征子集。实验结果表明,在Phoenix, MMU, IITD数据库上,圆形扇形DCT提取用于虹膜识别具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compression strategy for handwritten gray level document images EKSS: An efficient approach for similarity search A semi-blind image watermarking based on Discrete Wavelet Transform and Secret Sharing Neuro Analytical hierarchy process (NAHP) approach for CAD/CAM/CIM tool selection in the context of small manufacturing industries ‘Robot-Cloud’: A framework to assist heterogeneous low cost robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1