{"title":"Dependency Link Embeddings: Continuous Representations of Syntactic Substructures","authors":"Mohit Bansal","doi":"10.3115/v1/W15-1514","DOIUrl":null,"url":null,"abstract":"We present a simple method to learn continuous representations of dependency substructures (links), with the motivation of directly working with higher-order, structured embeddings and their hidden relationships, and also to avoid the millions of sparse, template-based word-cluster features in dependency parsing. These link embeddings allow a significantly smaller and simpler set of unary features for dependency parsing, while maintaining improvements similar to state-of-the-art, n-ary word-cluster features, and also stacking over them. Moreover, these link vectors (made publicly available) are directly portable as offthe-shelf, dense, syntactic features in various NLP tasks. As one example, we incorporate them into constituent parse reranking, where their small feature set again matches the performance of standard non-local, manuallydefined features, and also stacks over them.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
We present a simple method to learn continuous representations of dependency substructures (links), with the motivation of directly working with higher-order, structured embeddings and their hidden relationships, and also to avoid the millions of sparse, template-based word-cluster features in dependency parsing. These link embeddings allow a significantly smaller and simpler set of unary features for dependency parsing, while maintaining improvements similar to state-of-the-art, n-ary word-cluster features, and also stacking over them. Moreover, these link vectors (made publicly available) are directly portable as offthe-shelf, dense, syntactic features in various NLP tasks. As one example, we incorporate them into constituent parse reranking, where their small feature set again matches the performance of standard non-local, manuallydefined features, and also stacks over them.