Dependency Link Embeddings: Continuous Representations of Syntactic Substructures

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1514
Mohit Bansal
{"title":"Dependency Link Embeddings: Continuous Representations of Syntactic Substructures","authors":"Mohit Bansal","doi":"10.3115/v1/W15-1514","DOIUrl":null,"url":null,"abstract":"We present a simple method to learn continuous representations of dependency substructures (links), with the motivation of directly working with higher-order, structured embeddings and their hidden relationships, and also to avoid the millions of sparse, template-based word-cluster features in dependency parsing. These link embeddings allow a significantly smaller and simpler set of unary features for dependency parsing, while maintaining improvements similar to state-of-the-art, n-ary word-cluster features, and also stacking over them. Moreover, these link vectors (made publicly available) are directly portable as offthe-shelf, dense, syntactic features in various NLP tasks. As one example, we incorporate them into constituent parse reranking, where their small feature set again matches the performance of standard non-local, manuallydefined features, and also stacks over them.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a simple method to learn continuous representations of dependency substructures (links), with the motivation of directly working with higher-order, structured embeddings and their hidden relationships, and also to avoid the millions of sparse, template-based word-cluster features in dependency parsing. These link embeddings allow a significantly smaller and simpler set of unary features for dependency parsing, while maintaining improvements similar to state-of-the-art, n-ary word-cluster features, and also stacking over them. Moreover, these link vectors (made publicly available) are directly portable as offthe-shelf, dense, syntactic features in various NLP tasks. As one example, we incorporate them into constituent parse reranking, where their small feature set again matches the performance of standard non-local, manuallydefined features, and also stacks over them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
依赖链接嵌入:语法子结构的连续表示
我们提出了一种简单的方法来学习依赖子结构(链接)的连续表示,其动机是直接处理高阶结构化嵌入及其隐藏关系,并避免依赖解析中数百万个稀疏的、基于模板的词簇特征。这些链接嵌入允许更小、更简单的一元特性集用于依赖项解析,同时保持类似于最先进的n元词簇特性的改进,并在它们之上进行叠加。此外,这些链接向量(公开可用)可以直接移植为各种NLP任务中的现成的、密集的语法特征。作为一个例子,我们将它们合并到组成解析重新排序中,其中它们的小特征集再次与标准的非局部、手动定义的特征的性能相匹配,并且还叠加在它们之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributional Semantic Concept Models for Entity Relation Discovery Learning Distributed Representations for Multilingual Text Sequences Vector Space Models for Scientific Document Summarization A Deep Architecture for Non-Projective Dependency Parsing Dependency Link Embeddings: Continuous Representations of Syntactic Substructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1