Design, implementation and experimental results of a wireless charger for E-bikes

F. Pellitteri, N. Campagna, V. Castiglia, A. Damiano, R. Miceli
{"title":"Design, implementation and experimental results of a wireless charger for E-bikes","authors":"F. Pellitteri, N. Campagna, V. Castiglia, A. Damiano, R. Miceli","doi":"10.1109/ICCEP.2019.8890187","DOIUrl":null,"url":null,"abstract":"Based on the Inductive Power Transfer (IPT), the wireless energy transmission is increasingly representing an attractive solution for vehicle battery charging. Due to its high smartness, the wireless solution may be considered an interesting battery charging method for electric bicycles, as they represent light-weight and flexible means of transportation. According to the Vehicle-To-Grid (V2G) concept, the wireless power flow can occur in both the alternative directions: from the grid to the battery or in the opposite way. A Bi-Directional Inductive Power Transfer (BDIPT) system is therefore particularly convenient in the scenario of a multi-parking area. For the E-bike application, a bicycle-to-grid or a bicycle-to-bicycle energy transfer is a viable solution by means of BDIPT. In this paper, a 100W prototype of wireless battery charger for E-bikes is proposed and described.","PeriodicalId":277718,"journal":{"name":"2019 International Conference on Clean Electrical Power (ICCEP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Clean Electrical Power (ICCEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEP.2019.8890187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Based on the Inductive Power Transfer (IPT), the wireless energy transmission is increasingly representing an attractive solution for vehicle battery charging. Due to its high smartness, the wireless solution may be considered an interesting battery charging method for electric bicycles, as they represent light-weight and flexible means of transportation. According to the Vehicle-To-Grid (V2G) concept, the wireless power flow can occur in both the alternative directions: from the grid to the battery or in the opposite way. A Bi-Directional Inductive Power Transfer (BDIPT) system is therefore particularly convenient in the scenario of a multi-parking area. For the E-bike application, a bicycle-to-grid or a bicycle-to-bicycle energy transfer is a viable solution by means of BDIPT. In this paper, a 100W prototype of wireless battery charger for E-bikes is proposed and described.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电动自行车无线充电器的设计、实现及实验结果
基于感应功率传输(IPT)技术的无线能量传输正日益成为汽车电池充电的一种有吸引力的解决方案。由于其高度智能,无线解决方案可能被认为是一种有趣的电动自行车电池充电方式,因为它们代表了轻便灵活的交通工具。根据车辆到电网(V2G)的概念,无线电力流可以在两个方向上发生:从电网到电池或相反的方向。因此,双向感应功率传输(BDIPT)系统在多停车场的场景中特别方便。对于电动自行车的应用,通过BDIPT实现自行车到电网或自行车到自行车的能量传输是一种可行的解决方案。本文提出并描述了一种100W的电动自行车无线充电样机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization in ZVS Mode of SiC MOSFET Modules for MVDC Applications Implementation and Experimental Tests of a Management System for MV/LV Distribution Grids On the Active Clamp Gate Driver Thermal Effects Comparative Analysis of Partial Shading Power Losses in Photovoltaic Topologies A control strategy for participation of DSO flexible resources in TSO ancillary services provision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1