Improved noise wave model of microwave FETs based on artificial neural networks

Z. Marinković, O. Pronić-Rančić, V. Markovic
{"title":"Improved noise wave model of microwave FETs based on artificial neural networks","authors":"Z. Marinković, O. Pronić-Rančić, V. Markovic","doi":"10.1109/ECCTD.2007.4529708","DOIUrl":null,"url":null,"abstract":"An application of artificial neural networks for accuracy improving of the microwave FET transistor noise modeling is presented in this paper. The proposed model is based on a basic transistor noise wave model whose noise wave temperatures are assumed to be constant over the operating frequency range. An artificial neural network is included in the model in order to make values of the noise parameters obtained by the original wave model more accurate.","PeriodicalId":445822,"journal":{"name":"2007 18th European Conference on Circuit Theory and Design","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 18th European Conference on Circuit Theory and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2007.4529708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An application of artificial neural networks for accuracy improving of the microwave FET transistor noise modeling is presented in this paper. The proposed model is based on a basic transistor noise wave model whose noise wave temperatures are assumed to be constant over the operating frequency range. An artificial neural network is included in the model in order to make values of the noise parameters obtained by the original wave model more accurate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的微波场效应管噪声波模型的改进
本文介绍了人工神经网络在提高微波场效应晶体管噪声建模精度中的应用。所提出的模型是基于一个基本的晶体管噪声波模型,该模型假设噪声波温度在工作频率范围内是恒定的。为了使原波模型得到的噪声参数值更加准确,在模型中加入了人工神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparison between the message embedded cryptosystem and the self-synchronous stream cipher Mosquito 12-bit 2.4 GHz D/A upconverter Compensated circuit for Low Dropout Regulator having stable load regulation after consideration of bonding wire resistance Closed-Form expression of frequency pulling in unlocked-driven nonlinear oscillators Novel topologies of cascade ΣΔ modulators for low-voltage wideband applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1