Revisiting PatchMatch Multi-View Stereo for Urban 3D Reconstruction

M. Orsingher, P. Zani, P. Medici, M. Bertozzi
{"title":"Revisiting PatchMatch Multi-View Stereo for Urban 3D Reconstruction","authors":"M. Orsingher, P. Zani, P. Medici, M. Bertozzi","doi":"10.48550/arXiv.2207.08439","DOIUrl":null,"url":null,"abstract":"In this paper, a complete pipeline for image-based 3D reconstruction of urban scenarios is proposed, based on PatchMatch Multi-View Stereo (MVS). Input images are firstly fed into an off-the-shelf visual SLAM system to extract camera poses and sparse keypoints, which are used to initialize PatchMatch optimization. Then, pixelwise depths and normals are iteratively computed in a multi-scale framework with a novel depth-normal consistency loss term and a global refinement algorithm to balance the inherently local nature of PatchMatch. Finally, a large-scale point cloud is generated by back-projecting multi-view consistent estimates in 3D. The proposed approach is carefully evaluated against both classical MVS algorithms and monocular depth networks on the KITTI dataset, showing state of the art performances.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.08439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a complete pipeline for image-based 3D reconstruction of urban scenarios is proposed, based on PatchMatch Multi-View Stereo (MVS). Input images are firstly fed into an off-the-shelf visual SLAM system to extract camera poses and sparse keypoints, which are used to initialize PatchMatch optimization. Then, pixelwise depths and normals are iteratively computed in a multi-scale framework with a novel depth-normal consistency loss term and a global refinement algorithm to balance the inherently local nature of PatchMatch. Finally, a large-scale point cloud is generated by back-projecting multi-view consistent estimates in 3D. The proposed approach is carefully evaluated against both classical MVS algorithms and monocular depth networks on the KITTI dataset, showing state of the art performances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重访PatchMatch多视点立体城市三维重建
本文提出了一种基于PatchMatch Multi-View Stereo (MVS)的基于图像的城市场景三维重建的完整流水线。首先将输入图像输入到现成的视觉SLAM系统中,提取相机姿态和稀疏关键点,用于初始化PatchMatch优化。然后,在多尺度框架中迭代计算像素深度和法线,该框架采用新颖的深度-法线一致性损失项和全局细化算法来平衡PatchMatch固有的局部性。最后,通过在三维空间中反向投影多视图一致估计生成大规模点云。该方法在KITTI数据集上对经典MVS算法和单目深度网络进行了仔细评估,显示了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1