Selective Hypergraph Convolutional Networks for Skeleton-based Action Recognition

Yiran Zhu, Guangji Huang, Xing Xu, Yanli Ji, Fumin Shen
{"title":"Selective Hypergraph Convolutional Networks for Skeleton-based Action Recognition","authors":"Yiran Zhu, Guangji Huang, Xing Xu, Yanli Ji, Fumin Shen","doi":"10.1145/3512527.3531367","DOIUrl":null,"url":null,"abstract":"In skeleton-based action recognition, Graph Convolutional Networks (GCNs) have achieved remarkable performance since the skeleton representation of human action can be naturally modeled by the graph structure. Most of the existing GCN-based methods extract skeleton features by exploiting single-scale joint information, while neglecting the valuable multi-scale contextual information. Besides, the commonly used strided convolution in temporal dimension could evenly filters out the keyframes we expect to preserve and leads to the loss of keyframe information. To address these issues, we propose a novel Selective Hypergraph Convolution Network, dubbed Selective-HCN, which stacks two key modules: Selective-scale Hypergraph Convolution (SHC) and Selective-frame Temporal Convolution (STC). The SHC module represents the human skeleton as the graph and hypergraph to fully extract multi-scale information, and selectively fuse features at various scales. Instead of traditional strided temporal convolution, the STC module can adaptively select keyframes and filter redundant frames according to the importance of the frames. Extensive experiments on two challenging skeleton action benchmarks, i.e., NTU-RGB+D and Skeleton-Kinetics, demonstrate the superiority and effectiveness of our proposed method.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In skeleton-based action recognition, Graph Convolutional Networks (GCNs) have achieved remarkable performance since the skeleton representation of human action can be naturally modeled by the graph structure. Most of the existing GCN-based methods extract skeleton features by exploiting single-scale joint information, while neglecting the valuable multi-scale contextual information. Besides, the commonly used strided convolution in temporal dimension could evenly filters out the keyframes we expect to preserve and leads to the loss of keyframe information. To address these issues, we propose a novel Selective Hypergraph Convolution Network, dubbed Selective-HCN, which stacks two key modules: Selective-scale Hypergraph Convolution (SHC) and Selective-frame Temporal Convolution (STC). The SHC module represents the human skeleton as the graph and hypergraph to fully extract multi-scale information, and selectively fuse features at various scales. Instead of traditional strided temporal convolution, the STC module can adaptively select keyframes and filter redundant frames according to the importance of the frames. Extensive experiments on two challenging skeleton action benchmarks, i.e., NTU-RGB+D and Skeleton-Kinetics, demonstrate the superiority and effectiveness of our proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于骨架的动作识别的选择性超图卷积网络
在基于骨架的动作识别中,图卷积网络(GCNs)取得了显著的性能,因为人类动作的骨架表示可以通过图结构自然地建模。现有的基于遗传神经网络的方法大多是利用单尺度关节信息提取骨架特征,而忽略了有价值的多尺度上下文信息。此外,常用的时间维跨行卷积会均匀滤除我们希望保留的关键帧,导致关键帧信息的丢失。为了解决这些问题,我们提出了一种新的选择性超图卷积网络,称为Selective- hcn,它堆叠了两个关键模块:选择性尺度超图卷积(Selective scale Hypergraph Convolution, SHC)和选择性帧时间卷积(Selective frame Temporal Convolution, STC)。SHC模块将人体骨骼以图和超图的形式表示,充分提取多尺度信息,并有选择地融合不同尺度的特征。STC模块可以自适应地选择关键帧,并根据帧的重要性对冗余帧进行滤波,而不是传统的跨行时间卷积。在两个具有挑战性的骨骼动作基准,即NTU-RGB+D和skeleton - kinetics上进行了大量实验,证明了我们提出的方法的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1