Using the Prediction Error Criterion as a Selection Method in Forecasting Option Prices: A Simulation Approach

Stavros Degiannakis, E. Xekalaki
{"title":"Using the Prediction Error Criterion as a Selection Method in Forecasting Option Prices: A Simulation Approach","authors":"Stavros Degiannakis, E. Xekalaki","doi":"10.2139/ssrn.2804976","DOIUrl":null,"url":null,"abstract":"Degiannakis and Xekalaki (1999) compare the forecasting ability of Autoregressive Conditional Heteroscedastic (ARCH) models using the Correlated Gamma Ratio (CGR) distribution. According to the PEC model selection algorithm, the models with the lowest sum of squared standardized one-step-ahead prediction errors are the most appropriate to exploit future volatility. Based on Engle et al. (1993), an economic criterion to evaluate the PEC model selection algorithm is applied: the cumulative profits of the participants in an options market in pricing oneday index straddle options based on the variance forecasts. An options market consisting of 104 traders is simulated. Each participant applies his/her own variance forecast algorithm to price a straddle on Standard and Poor’s 500 (S&P500) index for the next day. Traders who based their selection on the PEC model selection algorithm achieve the highest profits. Thus, the PEC selection method appears to be a tool in guiding one’s choice of the appropriate model for estimating future volatility in pricing derivatives.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2804976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Degiannakis and Xekalaki (1999) compare the forecasting ability of Autoregressive Conditional Heteroscedastic (ARCH) models using the Correlated Gamma Ratio (CGR) distribution. According to the PEC model selection algorithm, the models with the lowest sum of squared standardized one-step-ahead prediction errors are the most appropriate to exploit future volatility. Based on Engle et al. (1993), an economic criterion to evaluate the PEC model selection algorithm is applied: the cumulative profits of the participants in an options market in pricing oneday index straddle options based on the variance forecasts. An options market consisting of 104 traders is simulated. Each participant applies his/her own variance forecast algorithm to price a straddle on Standard and Poor’s 500 (S&P500) index for the next day. Traders who based their selection on the PEC model selection algorithm achieve the highest profits. Thus, the PEC selection method appears to be a tool in guiding one’s choice of the appropriate model for estimating future volatility in pricing derivatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用预测误差标准作为期权价格预测的选择方法:一种模拟方法
Degiannakis和Xekalaki(1999)比较了使用相关伽马比(CGR)分布的自回归条件异方差(ARCH)模型的预测能力。根据PEC模型选择算法,标准化一步前预测误差平方和最小的模型最适合开发未来波动率。Engle et al.(1993)提出了一个评估PEC模型选择算法的经济标准:基于方差预测的单日指数跨期期权定价中期权市场参与者的累积利润。模拟一个由104个交易者组成的期权市场。每个参与者使用他/她自己的方差预测算法为第二天的标准普尔500指数(S&P500)定价。基于PEC模型选择算法进行选择的交易者获得了最高的利润。因此,PEC选择方法似乎是一种工具,可以指导人们选择适当的模型来估计衍生品定价的未来波动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Returns Out of Sample: A Naïve Model Averaging Approach Forecasting with Deep Temporal Hierarchies Liquidity and Mispricing Charting By Machines Lawrence R. Klein’s Principles in Modeling and Contributions in Nowcasting, Real-Time Forecasting, and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1