Charting By Machines

Scott Murray, Houping Xiao, Yusen Xia
{"title":"Charting By Machines","authors":"Scott Murray, Houping Xiao, Yusen Xia","doi":"10.2139/ssrn.3853436","DOIUrl":null,"url":null,"abstract":"We test the efficient market hypothesis by using machine learning to forecast future stock returns from historical performance. These forecasts strongly predict the cross section of future stock returns. The predictive power holds in most subperiods, is strong among the largest 500 stocks, and is distinct from momentum and reversal. The forecasting function has important nonlinearities and interactions and is remarkably stable through time. Our research design ensures that our findings are not a result of data mining. These findings question the efficient market hypothesis and indicate that investment strategies based on technical analysis and charting may have merit.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3853436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We test the efficient market hypothesis by using machine learning to forecast future stock returns from historical performance. These forecasts strongly predict the cross section of future stock returns. The predictive power holds in most subperiods, is strong among the largest 500 stocks, and is distinct from momentum and reversal. The forecasting function has important nonlinearities and interactions and is remarkably stable through time. Our research design ensures that our findings are not a result of data mining. These findings question the efficient market hypothesis and indicate that investment strategies based on technical analysis and charting may have merit.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器制图
我们通过使用机器学习从历史表现中预测未来股票回报来检验有效市场假设。这些预测有力地预测了未来股票收益的横截面。这种预测能力在大多数子周期中都是有效的,在最大的500只股票中表现强劲,并且与动量和反转截然不同。预测函数具有重要的非线性和相互作用,并且随着时间的推移具有显著的稳定性。我们的研究设计确保我们的发现不是数据挖掘的结果。这些发现质疑了有效市场假说,并表明基于技术分析和图表的投资策略可能有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Returns Out of Sample: A Naïve Model Averaging Approach Forecasting with Deep Temporal Hierarchies Liquidity and Mispricing Charting By Machines Lawrence R. Klein’s Principles in Modeling and Contributions in Nowcasting, Real-Time Forecasting, and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1