SA-Chord: A Self-Adaptive P2P Overlay Network

Mirko D'Angelo, M. Caporuscio
{"title":"SA-Chord: A Self-Adaptive P2P Overlay Network","authors":"Mirko D'Angelo, M. Caporuscio","doi":"10.1109/FAS-W.2018.00035","DOIUrl":null,"url":null,"abstract":"Pure Edge Computing relies on peer-to-peer overlay networks to realize the communication backbone between participating entities. In these settings, entities are characterized by high heterogeneity, mobility, and variability, which introduce runtime uncertainty and may harm the dependability of the network. Departing from state-of-the-art solutions, overlay networks for Pure Edge Computing should take into account the dynamics of the operating environment and self-adapt their topology accordingly, in order to increase the dependability of the communication. To this end, this paper discusses the preliminary development and validation of SA-Chord, a self-adaptive version of the wellknown Chord protocol, able to adapt the network topology according to a given global goal. SA-Chord has been validated through simulation against two distinct goals: (i) minimize energy consumption and, (ii) maximize network throughput. Simulation results are promising and show how SA-Chord efficiently and effectively achieves a given goal.","PeriodicalId":164903,"journal":{"name":"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Pure Edge Computing relies on peer-to-peer overlay networks to realize the communication backbone between participating entities. In these settings, entities are characterized by high heterogeneity, mobility, and variability, which introduce runtime uncertainty and may harm the dependability of the network. Departing from state-of-the-art solutions, overlay networks for Pure Edge Computing should take into account the dynamics of the operating environment and self-adapt their topology accordingly, in order to increase the dependability of the communication. To this end, this paper discusses the preliminary development and validation of SA-Chord, a self-adaptive version of the wellknown Chord protocol, able to adapt the network topology according to a given global goal. SA-Chord has been validated through simulation against two distinct goals: (i) minimize energy consumption and, (ii) maximize network throughput. Simulation results are promising and show how SA-Chord efficiently and effectively achieves a given goal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SA-Chord:一个自适应的P2P覆盖网络
纯边缘计算依靠点对点覆盖网络来实现参与实体之间的通信骨干。在这些设置中,实体具有高度的异构性、移动性和可变性,这引入了运行时的不确定性,并可能损害网络的可靠性。与最先进的解决方案不同,纯边缘计算的覆盖网络应该考虑到操作环境的动态,并相应地自适应其拓扑结构,以增加通信的可靠性。为此,本文讨论了SA-Chord的初步开发和验证,SA-Chord是著名的Chord协议的自适应版本,能够根据给定的全局目标调整网络拓扑。SA-Chord已经通过模拟验证了两个不同的目标:(i)最小化能耗和(ii)最大化网络吞吐量。仿真结果显示了SA-Chord如何高效、有效地实现给定的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Self-Adaptive Systems with Hierarchical Decentralised Control DymGPU: Dynamic Memory Management for Sharing GPUs in Virtualized Clouds Reactive and Adaptive Security Monitoring in Cloud Computing Aspects of Measuring and Evaluating the Integration Status of a (Sub-)System at Runtime Efficient Classification of Application Characteristics by Using Hardware Performance Counters with Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1