Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization

Aditya Kolakoti, M. Setiyo, Budi Waluyo
{"title":"Biodiesel Production from Waste Cooking Oil: Characterization, Modeling and Optimization","authors":"Aditya Kolakoti, M. Setiyo, Budi Waluyo","doi":"10.31603/mesi.5320","DOIUrl":null,"url":null,"abstract":"In this study, waste and discarded cooking oils (WCO) of palm, sunflower, rice bran and groundnut oils are collected from local restaurants. The high viscous WCO was converted into waste cooking oil biodiesel (WCOBD) by a single-stage transesterification process. During the transesterification process, the important parameters which show a significant change in biodiesel yield are studied using the optimization tool of response surface methodology (RSM). Results reported that 91.30% biodiesel yield was achieved within L18 experiments and NaOH catalyst was identified as the most influential parameter on WCOBD yield. Artificial Intelligence (AI) based modeling was also carried out to predict biodiesel yield. From AI modeling, a predicted yield of 92.88% was achieved, which is 1.70% higher than the RSM method. These results reveal the prediction capabilities and accuracy of the chosen modeling and optimization methods. In addition, the significant fuel properties are measured and observed within the scope of ASTM standards (ASTMD6751) and fatty acid profiles from chromatography reveal the presence of high unsaturated fatty acids in WCOBD. Therefore, utilizing the waste cooking oils for biodiesel production can mitigate the global challenges of environmental and energy paucity.","PeriodicalId":177693,"journal":{"name":"Mechanical Engineering for Society and Industry","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering for Society and Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31603/mesi.5320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this study, waste and discarded cooking oils (WCO) of palm, sunflower, rice bran and groundnut oils are collected from local restaurants. The high viscous WCO was converted into waste cooking oil biodiesel (WCOBD) by a single-stage transesterification process. During the transesterification process, the important parameters which show a significant change in biodiesel yield are studied using the optimization tool of response surface methodology (RSM). Results reported that 91.30% biodiesel yield was achieved within L18 experiments and NaOH catalyst was identified as the most influential parameter on WCOBD yield. Artificial Intelligence (AI) based modeling was also carried out to predict biodiesel yield. From AI modeling, a predicted yield of 92.88% was achieved, which is 1.70% higher than the RSM method. These results reveal the prediction capabilities and accuracy of the chosen modeling and optimization methods. In addition, the significant fuel properties are measured and observed within the scope of ASTM standards (ASTMD6751) and fatty acid profiles from chromatography reveal the presence of high unsaturated fatty acids in WCOBD. Therefore, utilizing the waste cooking oils for biodiesel production can mitigate the global challenges of environmental and energy paucity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从废食用油生产生物柴油:表征、建模和优化
在本研究中,从当地餐馆收集棕榈油、葵花籽油、米糠油和花生油的废弃和废弃食用油。采用单段酯交换法,将高粘性WCO转化为废食用油生物柴油。利用响应面法优化工具,对酯交换过程中影响生物柴油产率的重要参数进行了研究。结果表明,L18实验的生物柴油产率达到91.30%,NaOH催化剂是影响WCOBD产率最大的参数。基于人工智能(AI)的建模也被用于预测生物柴油的产量。人工智能模型的预测收率为92.88%,比RSM方法提高了1.70%。这些结果显示了所选择的建模和优化方法的预测能力和准确性。此外,在ASTM标准(ASTMD6751)范围内测量和观察了重要的燃料特性,色谱法的脂肪酸谱显示WCOBD中存在高不饱和脂肪酸。因此,利用废弃食用油生产生物柴油可以缓解全球环境和能源短缺的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensile shear load in resistance spot welding of dissimilar metals: An optimization study using response surface methodology Characteristics of briquettes from plastic pyrolysis by-products Design and implementation of automatic fish feeder (AFF) using microcontroller powered by solar cell: A Contribution to the fish farmers Carbon black: Production, properties, and utilization Energy and cooling performance of carbon-dioxide and hydrofluoroolefins blends as eco-friendly substitutes for R410A in air-conditioning systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1