Compressed sensing and robust recovery of low rank matrices

Maryam Fazel, E. Candès, B. Recht, P. Parrilo
{"title":"Compressed sensing and robust recovery of low rank matrices","authors":"Maryam Fazel, E. Candès, B. Recht, P. Parrilo","doi":"10.1109/ACSSC.2008.5074571","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on compressed sensing and recovery schemes for low-rank matrices, asking under what conditions a low-rank matrix can be sensed and recovered from incomplete, inaccurate, and noisy observations. We consider three schemes, one based on a certain Restricted Isometry Property and two based on directly sensing the row and column space of the matrix. We study their properties in terms of exact recovery in the ideal case, and robustness issues for approximately low-rank matrices and for noisy measurements.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"126","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 126

Abstract

In this paper, we focus on compressed sensing and recovery schemes for low-rank matrices, asking under what conditions a low-rank matrix can be sensed and recovered from incomplete, inaccurate, and noisy observations. We consider three schemes, one based on a certain Restricted Isometry Property and two based on directly sensing the row and column space of the matrix. We study their properties in terms of exact recovery in the ideal case, and robustness issues for approximately low-rank matrices and for noisy measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低秩矩阵的压缩感知与鲁棒恢复
在本文中,我们专注于低秩矩阵的压缩感知和恢复方案,探讨在什么条件下可以从不完整、不准确和有噪声的观测中感知和恢复低秩矩阵。我们考虑了三种方案,一种是基于一定的受限等距性质,另一种是基于直接感知矩阵的行空间和列空间。我们从理想情况下精确恢复的角度研究了它们的性质,以及近似低秩矩阵和噪声测量的鲁棒性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavenumber domain focusing of squinted SAR data with a curved orbit geometry An automated three-dimensional visualization and classification of emphysema using neural network Analysis of voltage overscaled computer arithmetics in low power signal processing systems End-to-end antenna selection strategies for multi-hop relay channels Distributed demodulation using consensus averaging in wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1