Semantic Integration of Structured Data Powered by Linked Open Data

A. Subramanian, S. Srinivasa, Pavan Kumar, S. Vignesh
{"title":"Semantic Integration of Structured Data Powered by Linked Open Data","authors":"A. Subramanian, S. Srinivasa, Pavan Kumar, S. Vignesh","doi":"10.1145/2797115.2797130","DOIUrl":null,"url":null,"abstract":"Recent advances in open data have resulted in vast amounts of tabular datasets containing valuable, actionable information to several stakeholders. However, information pertaining to any given entity is fragmented across several arbitrarily structured tables. There is a pressing need for semantic integration of such disparate datasets to enable deeper forms of inference and intelligence. This task is challenging because not only such datasets have no overarching schematic framework, there is also no overarching thematic framework. The datasets need not be about any one specific topic or theme. Hence, there is no one specific ontology onto which the datasets can be mapped. In this work we address the issue of mapping arbitrarily structured tabular data to one or more existing ontologies from the Linked Open Data Cloud (LOD) or abducing a new ontology around subsets of such tables. The overall objectives of this work called \"Inferencing in the Large\" aims to go further than this, to enrich mapped ontologies with inferencing rules and enable the use of semantic reasoners.","PeriodicalId":386229,"journal":{"name":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2797115.2797130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recent advances in open data have resulted in vast amounts of tabular datasets containing valuable, actionable information to several stakeholders. However, information pertaining to any given entity is fragmented across several arbitrarily structured tables. There is a pressing need for semantic integration of such disparate datasets to enable deeper forms of inference and intelligence. This task is challenging because not only such datasets have no overarching schematic framework, there is also no overarching thematic framework. The datasets need not be about any one specific topic or theme. Hence, there is no one specific ontology onto which the datasets can be mapped. In this work we address the issue of mapping arbitrarily structured tabular data to one or more existing ontologies from the Linked Open Data Cloud (LOD) or abducing a new ontology around subsets of such tables. The overall objectives of this work called "Inferencing in the Large" aims to go further than this, to enrich mapped ontologies with inferencing rules and enable the use of semantic reasoners.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链接开放数据驱动的结构化数据语义集成
开放数据的最新进展导致了大量的表格数据集,其中包含对几个利益相关者有价值的、可操作的信息。但是,与任何给定实体相关的信息都分散在几个任意结构的表中。迫切需要对这些不同的数据集进行语义集成,以实现更深层次的推理和智能。这项任务是具有挑战性的,因为不仅这些数据集没有总体的示意图框架,也没有总体的主题框架。数据集不需要是关于任何一个特定的主题或主题。因此,没有一个特定的本体可以将数据集映射到其上。在这项工作中,我们解决了将任意结构化的表格数据映射到链接开放数据云(LOD)中的一个或多个现有本体的问题,或者围绕这些表的子集派生一个新的本体。这项名为“大范围推理”的工作的总体目标旨在更进一步,通过推理规则丰富映射本体,并启用语义推理器的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and predicting information search behavior An Ontology Enrichment Approach by Using DBpedia Semantic Integration of Structured Data Powered by Linked Open Data A LOD-based, query construction and refinement service for web search engines Recommending Customizable Products: A Multiple Choice Knapsack Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1