Time-variant parameter estimation using a SVM Gray-Box model: Application to a CSTR Process

G. Acuña, Millaray Curilem
{"title":"Time-variant parameter estimation using a SVM Gray-Box model: Application to a CSTR Process","authors":"G. Acuña, Millaray Curilem","doi":"10.1109/ICOSC.2013.6750892","DOIUrl":null,"url":null,"abstract":"Gray-Box models (GBM) which combine a priori knowledge of a process -e.g. first principle equations- with a black-box modeling technique are useful when some parameters of the first-principle model -normally time-variant parameters cannot be easily determined. In this case the black-box part of the GBM can be used to model the influence of input and state variables on the evolution of those parameters. The most commonly used black-box technique for GBM is Artificial Neural Networks (ANN). However Support Vector Machine (SVM) has shown its usefulness by improving over the performance of different supervised learning methods, either as classification models or as regression models. In this paper, a kind of SVM -the Least-Square Support Vector Machine (LS-SVM)- is used to develop a GBM for a Continuous Stirred Tank Reactor (CSTR) process. The aim of the present work is then to build a GBM to estimate a time-varying parameter, ρ, of the CSTR process. Good results confirm that SVM can be effectively used for developing GBM to estimate time-varying parameters of non-linear processes like CSTR.","PeriodicalId":199135,"journal":{"name":"3rd International Conference on Systems and Control","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2013.6750892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Gray-Box models (GBM) which combine a priori knowledge of a process -e.g. first principle equations- with a black-box modeling technique are useful when some parameters of the first-principle model -normally time-variant parameters cannot be easily determined. In this case the black-box part of the GBM can be used to model the influence of input and state variables on the evolution of those parameters. The most commonly used black-box technique for GBM is Artificial Neural Networks (ANN). However Support Vector Machine (SVM) has shown its usefulness by improving over the performance of different supervised learning methods, either as classification models or as regression models. In this paper, a kind of SVM -the Least-Square Support Vector Machine (LS-SVM)- is used to develop a GBM for a Continuous Stirred Tank Reactor (CSTR) process. The aim of the present work is then to build a GBM to estimate a time-varying parameter, ρ, of the CSTR process. Good results confirm that SVM can be effectively used for developing GBM to estimate time-varying parameters of non-linear processes like CSTR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机灰盒模型的时变参数估计:在CSTR过程中的应用
当第一原理模型的某些参数(通常是时变参数)不能轻易确定时,将过程的先验知识(例如第一原理方程)与黑盒建模技术相结合的灰盒模型(GBM)是有用的。在这种情况下,GBM的黑盒部分可以用来模拟输入变量和状态变量对这些参数演化的影响。最常用的黑盒技术是人工神经网络(ANN)。然而,支持向量机(SVM)通过改进不同监督学习方法的性能,无论是作为分类模型还是作为回归模型,都显示了它的有用性。本文利用最小二乘支持向量机(LS-SVM)建立了连续搅拌槽式反应器(CSTR)过程的支持向量机模型。本工作的目的是建立一个GBM来估计CSTR过程的时变参数ρ。良好的结果证实了支持向量机可以有效地用于发展GBM来估计CSTR等非线性过程的时变参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust nonlinear control design for turbocharged biodiesel engine Observability-singularity manifolds in the context of chaos based cryptography Design of unbiased functional observers for interconnected discrete-time delay systems H∞ filter based-controller for a class of continuous time nonlinear singular systems From restricted isometry property to observability under sparse measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1