PREDIKSI PRESTASI MAHASISWA DENGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION

Sahat Sonang, Arifin Tua Purba, Sarida Sirait
{"title":"PREDIKSI PRESTASI MAHASISWA DENGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION","authors":"Sahat Sonang, Arifin Tua Purba, Sarida Sirait","doi":"10.37600/tekinkom.v5i1.512","DOIUrl":null,"url":null,"abstract":"This study aims to overcome the problems in predicting student achievement at the Polytechnic Business Indonesia Pematangsiantar. To predict student achievement is done by applying Backpropagation algorithm and implement it into Matlab software. Backpropagation algorithm is one of the methods on artificial neural networks that is quite reliable in solving problems including prediction. In this study conducted on the object of students semester One with a lot of data samples 26 samples. The data sample is divided into two parts, 70% of the data is used as training data and 30% of the data is used as testing data. This study uses ten architectural models, namely 9-2-1, 9-3-1, 9-4-1, 9-5-1, 9-6-1, 9-7-1, 9-8-1, 9-9-1, 9-10-1, 9-11-1. Of the ten Backpropagation network architecture models implemented in predicting student achievement in Matlab software obtained the best output is 9-2-1 pattern with epoch 8149, time duration for 17 seconds, and MSE (error rate) value of 2.80 e-05 for training and MSE (error rate) of 0.1248 with accuracy of 87.5% for testing. The best architecture obtained is expected to be used as a picture by the academic Polytechnic Business Indonesia (PBI) in predicting student achievement.","PeriodicalId":365934,"journal":{"name":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37600/tekinkom.v5i1.512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to overcome the problems in predicting student achievement at the Polytechnic Business Indonesia Pematangsiantar. To predict student achievement is done by applying Backpropagation algorithm and implement it into Matlab software. Backpropagation algorithm is one of the methods on artificial neural networks that is quite reliable in solving problems including prediction. In this study conducted on the object of students semester One with a lot of data samples 26 samples. The data sample is divided into two parts, 70% of the data is used as training data and 30% of the data is used as testing data. This study uses ten architectural models, namely 9-2-1, 9-3-1, 9-4-1, 9-5-1, 9-6-1, 9-7-1, 9-8-1, 9-9-1, 9-10-1, 9-11-1. Of the ten Backpropagation network architecture models implemented in predicting student achievement in Matlab software obtained the best output is 9-2-1 pattern with epoch 8149, time duration for 17 seconds, and MSE (error rate) value of 2.80 e-05 for training and MSE (error rate) of 0.1248 with accuracy of 87.5% for testing. The best architecture obtained is expected to be used as a picture by the academic Polytechnic Business Indonesia (PBI) in predicting student achievement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学生成就预测使用了一种基于宣传的算法
本研究的目的在于克服预测印尼工商学院学生成绩的问题。应用反向传播算法对学生成绩进行预测,并在Matlab软件中实现。反向传播算法是人工神经网络中较为可靠的一种解决预测等问题的方法。本研究以第一学期的学生为对象进行了大量的数据样本26个样本。数据样本分为两部分,70%的数据作为训练数据,30%的数据作为测试数据。本研究使用了10个建筑模型,分别是9-2-1、9-3-1、9-4-1、9-5-1、9-6-1、9-7-1、9-8-1、9-9-1、9-10-1、9-11-1。在Matlab软件中实现的10个反向传播网络架构模型中,得到的最佳输出是9-2-1模式,epoch为8149,时间持续时间为17秒,训练时的MSE(错误率)值为2.80 e-05,测试时的MSE(错误率)为0.1248,准确率为87.5%。获得的最佳建筑预计将被印度尼西亚商业理工学院(PBI)用作预测学生成绩的图片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVALUASI USABILITY PADA APLIKASI IMMERSIVE STORY TELLING SATUA I BELOG IMPLEMENTASI TEKNOLOGI VIRTUAL DALAM VISUALISASI PENGENALAN KAMPUS MENGGUNAKAN WEBVR PENGEBANGAN MEDIA INTERAKTIF BERORIENTASI HOTS (HIGHER ORDER THINGKING SKILLS) PADA MATAPELAJARAN BILOGI BERBASIS ANDROID SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN OBYEK WISATA TERBAIK DI KABUPATEN SRAGEN DENGAN METODE WEIGHTED PRODUCT DATA MINING UNTUK KLASIFIKASI STATUS PANDEMI COVID 19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1