Segmentasi Lokasi Promosi Penerimaan Mahasiswa Baru Menggunakan Metode RFM dan K-Means Clustering

Hairani Hairani, D. Susilowati, Indah Puji Lestari, Khairan Marzuki, Lalu Zazuli Azhar Mardedi
{"title":"Segmentasi Lokasi Promosi Penerimaan Mahasiswa Baru Menggunakan Metode RFM dan K-Means Clustering","authors":"Hairani Hairani, D. Susilowati, Indah Puji Lestari, Khairan Marzuki, Lalu Zazuli Azhar Mardedi","doi":"10.30812/matrik.v21i2.1542","DOIUrl":null,"url":null,"abstract":"Persaingan penerimaan mahasiswa baru antar kampus swasta sangat ketat untuk menarik calon mahasiswa sehingga membutuhkan strategi. Strategi Universitas Bumigora adalah mengirimkan tim promosi ke sekolah-sekolah di pulau Lombok maupun pulau sumbawa. Permasalahan pihak panitia Penerimaan Mahasiswa Baru selama ini adalah tidak melakukan segmentasi sekolah yang menjadi skala prioritas untuk dikunjungi agar efektif dan efisien. Tujuan penelitian ini adalah melakukan segmentasi tingkat potensial sekolah sebagai strategi untuk memilih lokasi promosi penerimaan mahasiswa baru Universitas Bumigora menggunakan analisis model RFM dan metode K-means. Tahapan penelitian terdiri dari persiapan data penerimaan mahasiswa baru tahun 2019 dan 2020, pra-pengolahan data, penerapan model Recency (R), Frequency (F), dan Monetary (M)implementasi metode K-means, dan analisa hasil. Hasil penelitian ini adalah terbentuk 3 klaster tingkat potensial sekolah yang dapat dijadikan skala prioritas untuk lokasi promosi penerimaan mahasiswa baru Universitas Bumigora yaitu kurang potensial, potensial, dan sangat potensial. Klaster sangat potensial (C2) terdapat 28 sekolah, klaster potensial (C3) terdapat 90 sekolah, dan klaster kurang potensial (C1) terdapat 152 sekolah.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i2.1542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Persaingan penerimaan mahasiswa baru antar kampus swasta sangat ketat untuk menarik calon mahasiswa sehingga membutuhkan strategi. Strategi Universitas Bumigora adalah mengirimkan tim promosi ke sekolah-sekolah di pulau Lombok maupun pulau sumbawa. Permasalahan pihak panitia Penerimaan Mahasiswa Baru selama ini adalah tidak melakukan segmentasi sekolah yang menjadi skala prioritas untuk dikunjungi agar efektif dan efisien. Tujuan penelitian ini adalah melakukan segmentasi tingkat potensial sekolah sebagai strategi untuk memilih lokasi promosi penerimaan mahasiswa baru Universitas Bumigora menggunakan analisis model RFM dan metode K-means. Tahapan penelitian terdiri dari persiapan data penerimaan mahasiswa baru tahun 2019 dan 2020, pra-pengolahan data, penerapan model Recency (R), Frequency (F), dan Monetary (M)implementasi metode K-means, dan analisa hasil. Hasil penelitian ini adalah terbentuk 3 klaster tingkat potensial sekolah yang dapat dijadikan skala prioritas untuk lokasi promosi penerimaan mahasiswa baru Universitas Bumigora yaitu kurang potensial, potensial, dan sangat potensial. Klaster sangat potensial (C2) terdapat 28 sekolah, klaster potensial (C3) terdapat 90 sekolah, dan klaster kurang potensial (C1) terdapat 152 sekolah.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分割招生地点使用RFM方法和k -手段集合体
私立大学新生招生竞争非常激烈,需要策略。Bumigora的战略是向龙目岛和松巴瓦岛的学校派出推广团队。大一新生入学委员会的问题是,为了有效和有效,不要对学校进行细分。本研究的目的是通过RFM模型分析和k -均值方法,对学校的潜在招生策略进行评估。研究阶段包括准备2019年和2020年的新学生入学数据、数据前处理、模型Recency (R)、频率(F)和计算方法(M)的应用和结果分析。这项研究的结果是,三组潜在的学校级别已经形成,这可能是为Bumigora大学新生招生机会的优先级,即缺乏潜力、潜力和潜力。一个强大的集群有28所学校,一个潜在的集群有90所学校,而一个潜在的集群则缺乏152所学校。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of Port Knocking with Telegram Notifications to Protect Against Scanner Vulnerabilities Intelligent System for Internet of Things-Based Building Fire Safety with Naive Bayes Algorithm Detecting Disaster Trending Topics on Indonesian Tweets Using BNgram Electronic Tourism Using Decision Support Systems to Optimize the Trips Optimizing Inventory with Frequent Pattern Growth Algorithm for Small and Medium Enterprises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1