Steering kernel regression: An adaptive denoising tool to process GPR data

J. Tronicke, Urs Boniger
{"title":"Steering kernel regression: An adaptive denoising tool to process GPR data","authors":"J. Tronicke, Urs Boniger","doi":"10.1109/IWAGPR.2013.6601539","DOIUrl":null,"url":null,"abstract":"The recently introduced steering kernel regression (SKR) framework was originally developed to attenuate random noise in images and video sequences. The core of the method is the steering kernel function which incorporates a robust local estimate of image structure into the denoising framework. This helps to minimize image blurring and to preserve edges and corners. As such filter characteristics are also desirable for random noise attenuation in ground-penetrating radar (GPR) data, we propose to adopt the SKR method for processing GPR data. We test and evaluate this denoising method using different GPR data examples. Our results show that SKR is successful in removing random noise present in our data sets. Concurrently, it preserves local image structure and amplitudes. Thus, the method can be considered as a promising and novel approach for denoising GPR data.","PeriodicalId":257117,"journal":{"name":"2013 7th International Workshop on Advanced Ground Penetrating Radar","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 7th International Workshop on Advanced Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2013.6601539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The recently introduced steering kernel regression (SKR) framework was originally developed to attenuate random noise in images and video sequences. The core of the method is the steering kernel function which incorporates a robust local estimate of image structure into the denoising framework. This helps to minimize image blurring and to preserve edges and corners. As such filter characteristics are also desirable for random noise attenuation in ground-penetrating radar (GPR) data, we propose to adopt the SKR method for processing GPR data. We test and evaluate this denoising method using different GPR data examples. Our results show that SKR is successful in removing random noise present in our data sets. Concurrently, it preserves local image structure and amplitudes. Thus, the method can be considered as a promising and novel approach for denoising GPR data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转向核回归:一种处理探地雷达数据的自适应去噪工具
最近引入的转向核回归(SKR)框架最初是为了衰减图像和视频序列中的随机噪声而开发的。该方法的核心是转向核函数,它将图像结构的鲁棒局部估计融合到去噪框架中。这有助于减少图像模糊和保留边缘和角落。由于这种滤波特性对于探地雷达(GPR)数据中的随机噪声衰减也是理想的,因此我们建议采用SKR方法处理GPR数据。我们用不同的探地雷达数据实例对这种去噪方法进行了测试和评价。我们的结果表明,SKR可以成功地去除数据集中存在的随机噪声。同时,它保留了局部图像结构和幅值。因此,该方法可以被认为是一种很有前途的新型探地雷达数据去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evaluation of the early-time GPR amplitude technique for electrical conductivity monitoring Non destructive assessment of Hot Mix Asphalt compaction with a step frequency radar: Case study Towards physically-based filtering of the soil surface, antenna and coupling effects from near-field GPR data for improved subsurface imaging Time delay and surface roughness estimation by subspace algorithms for pavement survey by radar Applications of a reconfigurable stepped frequency GPR in the chapel of the Holy Spirit, Lecce (Italy)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1