Statistical distributions of load profiling data

Arfah Ahmad, Intan Azmira, Suziana Ahmad, N. Apandi
{"title":"Statistical distributions of load profiling data","authors":"Arfah Ahmad, Intan Azmira, Suziana Ahmad, N. Apandi","doi":"10.1109/PEOCO.2012.6230860","DOIUrl":null,"url":null,"abstract":"This paper present an approach to estimate the customer load confidence interval using statistical distribution model. Time series data of load profile in the utility of Malaysia was analyze and this data was fit with two statistical distribution models, namely the normal and log-normal distribution. Goodness of fit test was performed in the selection of best model. Result shows that the customer load consumption for each seven days can be model using both distributions. An estimated 90%, 95% and 99% customer load confidence interval was done via both distribution models.","PeriodicalId":138236,"journal":{"name":"2012 IEEE International Power Engineering and Optimization Conference Melaka, Malaysia","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Power Engineering and Optimization Conference Melaka, Malaysia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOCO.2012.6230860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper present an approach to estimate the customer load confidence interval using statistical distribution model. Time series data of load profile in the utility of Malaysia was analyze and this data was fit with two statistical distribution models, namely the normal and log-normal distribution. Goodness of fit test was performed in the selection of best model. Result shows that the customer load consumption for each seven days can be model using both distributions. An estimated 90%, 95% and 99% customer load confidence interval was done via both distribution models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
负载分析数据的统计分布
本文提出了一种利用统计分布模型估计客户负荷置信区间的方法。对马来西亚公用事业负荷分布的时间序列数据进行分析,并采用正态分布和对数正态分布两种统计分布模型进行拟合。选择最佳模型时进行拟合优度检验。结果表明,可以使用这两种分布对每七天的客户负载消耗进行建模。通过两种分布模型估计了90%、95%和99%的客户负荷置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of a 200 MW concentrated receiver solar power plant on steady-state and transient performances of Oman transmission system Evaluation of the effectiveness of voltage stability indices on different loadings Unit commitment in electrical power system-a literature review Power optimization for a small-sized stall-regulated variable-speed wind turbine Novel reduced parts one-line uninterruptible power supply
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1