Predictive Virtual Machine Placement for Energy Efficient Scalable Resource Provisioning in Modern Data Centers

Dr.Bharanidharan G, S. Jayalakshmi
{"title":"Predictive Virtual Machine Placement for Energy Efficient Scalable Resource Provisioning in Modern Data Centers","authors":"Dr.Bharanidharan G, S. Jayalakshmi","doi":"10.1109/INDIACom51348.2021.00052","DOIUrl":null,"url":null,"abstract":"In modern Data Centers (DCs), the major significant and challengeable task is resource management of cloud and efficient allocation of Virtual Machines (VMs) or containers in Physical Machines (PMs). There are several schemes proposed regarding this factor that includes VM placement considering utilization of resources. The process of consolidation may be done efficiently using “opportunities” discovery for migrating VMs and estimating utilization of resource to VM placement. However, the deduction of energy utilized over cloud DCs by physical resources with heterogeneous mode gets accomplished using consolidation of VM. This assists in minimize of PM numbers to be utilized and rely on constraints of Quality of Services (QoS). Therefore, this paper has proposed a predictive VM placement using an efficient Learning Automata (LA) with probability distribution activity set and it can be represented as Probability Distribution Action-set Learning Automata (PDALA) which results to the VM placement over heterogeneous cloud DCs. Thus, the proposed algorithm gets beneficial by implementing LA theory and correlation coefficient parameter to generate best decision making over VM allocation. Moreover, CloudSim plus simulator is used to simulate results and the simulation output gets compared with Power Aware Best Fit Decreasing (PABFD) as reactive VM placement. The proposed PDALA method performance is evaluated using parameters like VM migration, SLA Violation and energy consumption having comparatively better performance than existing reactive VM placement.","PeriodicalId":415594,"journal":{"name":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIACom51348.2021.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In modern Data Centers (DCs), the major significant and challengeable task is resource management of cloud and efficient allocation of Virtual Machines (VMs) or containers in Physical Machines (PMs). There are several schemes proposed regarding this factor that includes VM placement considering utilization of resources. The process of consolidation may be done efficiently using “opportunities” discovery for migrating VMs and estimating utilization of resource to VM placement. However, the deduction of energy utilized over cloud DCs by physical resources with heterogeneous mode gets accomplished using consolidation of VM. This assists in minimize of PM numbers to be utilized and rely on constraints of Quality of Services (QoS). Therefore, this paper has proposed a predictive VM placement using an efficient Learning Automata (LA) with probability distribution activity set and it can be represented as Probability Distribution Action-set Learning Automata (PDALA) which results to the VM placement over heterogeneous cloud DCs. Thus, the proposed algorithm gets beneficial by implementing LA theory and correlation coefficient parameter to generate best decision making over VM allocation. Moreover, CloudSim plus simulator is used to simulate results and the simulation output gets compared with Power Aware Best Fit Decreasing (PABFD) as reactive VM placement. The proposed PDALA method performance is evaluated using parameters like VM migration, SLA Violation and energy consumption having comparatively better performance than existing reactive VM placement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向现代数据中心节能可扩展资源配置的预测性虚拟机布局
在现代数据中心中,云资源管理和物理机中虚拟机或容器的高效分配是一个重要且具有挑战性的任务。关于这个因素,有几种方案被提出,其中包括考虑资源利用率的VM放置。整合过程可以使用迁移VM的“机会”发现和估计VM放置的资源利用率来有效地完成。而异构模式的物理资源在云数据中心上消耗的能量,可以通过虚拟机的整合来实现。这有助于最小化要使用的PM数量,并依赖于服务质量(QoS)的约束。因此,本文提出了一种使用具有概率分布活动集的高效学习自动机(LA)的预测VM放置方法,它可以表示为概率分布动作集学习自动机(PDALA),从而在异构云dc上实现VM放置。因此,该算法利用LA理论和相关系数参数对虚拟机分配产生最优决策。此外,使用CloudSim plus模拟器模拟结果,并将模拟输出与功率感知最佳拟合减少(PABFD)作为响应式VM放置进行比较。采用虚拟机迁移、SLA违反和能耗等参数对所提出的PDALA方法进行性能评估,其性能优于现有的反应式虚拟机放置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Scheduling of Parking Lot Operator in Energy and Regulation Markets amalgamating PBDR Social Synchrony: An Analytical Contemplation of Contemporary State of Art Frameworks The AI enabled Chatbot Framework for Intelligent Citizen-Government Interaction for Delivery of Services Biometric System - Challenges and Future Trends Solving SIS Epidemic Disease Model by Flower Pollination Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1