FPGA-based acceleration of stereo matching using OpenCL

Iman Firmansyah, Y. Yamaguchi, Ryo Nakagawa
{"title":"FPGA-based acceleration of stereo matching using OpenCL","authors":"Iman Firmansyah, Y. Yamaguchi, Ryo Nakagawa","doi":"10.1145/3575882.3575883","DOIUrl":null,"url":null,"abstract":"Stereo vision finds a wide range of applications for robot navigation, advanced driving support system, and autonomous driving in the automotive industry. The disparity map can be obtained through the implementation of stereo vision architecture using stereo matching. A stereo matching algorithm has recently been executed in FPGA. This study is aimed at assessing the stereo matching with the use of Stratix V FPGA and OpenCL framework. The latter refers to a parallel programming framework that enhances productivity by raising the code’s abstraction. Additionally, OpenCL allows for the processing of stereo matching using channel extensions. In the experiment, we partitioned the OpenCL kernel into three smaller kernels to examine the stereo matching on FPGA for computation. Such an approach enables streaming image pixels from the FPGA global memory. A line-buffer is employed to avoid the load-store dependencies caused by memory accesses when streaming the pixels to the window buffer inside the stereo matching kernel. We can achieve a rapid execution time, which is advantageous for real-time implementation, by streaming the image pixels through an OpenCL kernel partitioned using channel extension. The execution time to compute the disparity map using the stereo KITTI dataset with 1242x375 pixels resolution reaches 2.38 ms or 420 fps for 6x6 sliding window size, 2.44 ms or 409 fps for 7x7, and 2.52 ms or 396 fps for 8x8.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"79 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stereo vision finds a wide range of applications for robot navigation, advanced driving support system, and autonomous driving in the automotive industry. The disparity map can be obtained through the implementation of stereo vision architecture using stereo matching. A stereo matching algorithm has recently been executed in FPGA. This study is aimed at assessing the stereo matching with the use of Stratix V FPGA and OpenCL framework. The latter refers to a parallel programming framework that enhances productivity by raising the code’s abstraction. Additionally, OpenCL allows for the processing of stereo matching using channel extensions. In the experiment, we partitioned the OpenCL kernel into three smaller kernels to examine the stereo matching on FPGA for computation. Such an approach enables streaming image pixels from the FPGA global memory. A line-buffer is employed to avoid the load-store dependencies caused by memory accesses when streaming the pixels to the window buffer inside the stereo matching kernel. We can achieve a rapid execution time, which is advantageous for real-time implementation, by streaming the image pixels through an OpenCL kernel partitioned using channel extension. The execution time to compute the disparity map using the stereo KITTI dataset with 1242x375 pixels resolution reaches 2.38 ms or 420 fps for 6x6 sliding window size, 2.44 ms or 409 fps for 7x7, and 2.52 ms or 396 fps for 8x8.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于fpga的OpenCL立体匹配加速
立体视觉在机器人导航、高级驾驶支持系统、自动驾驶等领域有着广泛的应用。利用立体匹配实现立体视觉体系结构,得到视差图。一种立体匹配算法最近已经在FPGA上实现。本研究旨在利用Stratix V FPGA和OpenCL框架评估立体匹配。后者指的是通过提高代码的抽象来提高生产率的并行编程框架。此外,OpenCL允许使用通道扩展处理立体声匹配。在实验中,我们将OpenCL内核划分为三个较小的内核,在FPGA上检查立体匹配的计算。这种方法使FPGA全局存储器中的流图像像素成为可能。在将像素流到立体匹配内核内的窗口缓冲区时,使用行缓冲区来避免由于内存访问而导致的加载-存储依赖。我们可以通过使用通道扩展进行分区的OpenCL内核流式传输图像像素,从而实现快速的执行时间,这有利于实时实现。使用1242x375像素分辨率的立体KITTI数据集计算视差图的执行时间对于6x6滑动窗口大小达到2.38 ms或420 fps,对于7x7达到2.44 ms或409 fps,对于8x8达到2.52 ms或396 fps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1