On the Averaging in the Multi-Blade Coordinate Transformations for Wind Turbines: An H∞Model Matching Approach

S. Mulders, J. Wingerden
{"title":"On the Averaging in the Multi-Blade Coordinate Transformations for Wind Turbines: An H∞Model Matching Approach","authors":"S. Mulders, J. Wingerden","doi":"10.1109/CCTA.2018.8511417","DOIUrl":null,"url":null,"abstract":"The blade dynamics of a wind turbine are periodic with the angular position of the rotor. For analysis of these dynamics it is common practice to use the so-called Multi-Blade Coordinate (MBC) transformation in combination with a system matrix averaging technique to obtain a linear time-invariant model. The MBC transformation eliminates the periodicity over a rotation of the rotor, while retaining important blade dynamics. However, in the averaging step the inevitable residual periodic dynamics can result in an inaccurate linear representation. This paper shows the inaccuracy of the state-of-the-art averaging technique using a high fidelity two-bladed wind turbine model. The state-of-the-art technique is compared to two novel averaging methods. Results show a close resemblance of the computed models from the proposed methods to the frequency response average, whereas the conventional method shows erroneous results.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The blade dynamics of a wind turbine are periodic with the angular position of the rotor. For analysis of these dynamics it is common practice to use the so-called Multi-Blade Coordinate (MBC) transformation in combination with a system matrix averaging technique to obtain a linear time-invariant model. The MBC transformation eliminates the periodicity over a rotation of the rotor, while retaining important blade dynamics. However, in the averaging step the inevitable residual periodic dynamics can result in an inaccurate linear representation. This paper shows the inaccuracy of the state-of-the-art averaging technique using a high fidelity two-bladed wind turbine model. The state-of-the-art technique is compared to two novel averaging methods. Results show a close resemblance of the computed models from the proposed methods to the frequency response average, whereas the conventional method shows erroneous results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风电机组多叶片坐标变换中的平均问题:一种H∞模型匹配方法
风力机叶片的动力学随转子的角度位置呈周期性变化。为了分析这些动力学,通常的做法是使用所谓的多叶片坐标(MBC)变换与系统矩阵平均技术相结合来获得线性时不变模型。MBC变换消除了转子旋转的周期性,同时保留了重要的叶片动力学。然而,在平均步骤中,不可避免的残余周期动力学可能导致不准确的线性表示。本文用一个高保真双叶片风力机模型说明了最先进的平均技术的不准确性。将最先进的技术与两种新的平均方法进行了比较。结果表明,该方法计算的模型与频率响应平均值非常接近,而传统方法的计算结果存在误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust $\mathcal{H}_{\infty}$ Pointing Error Control of Free Space Optical Communication Systems Incremental Reference Generation for Nonsingular Control on $SE (3)$ A Distributed Parameter Approach to Model the Transcriptional Response of Escherichia Coli in a Scale-Down Reactor Passivity-Short-based Stability Analysis on Electricity Market Trading System Considering Negative Price Robust and Secure UAV Navigation Using GNSS, Phased-Array Radio System and Inertial Sensor Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1