Statistical static timing analysis flow for transistor level macros in a microprocessor

V. Nandakumar, D. Newmark, Yaping Zhan, M. Marek-Sadowska
{"title":"Statistical static timing analysis flow for transistor level macros in a microprocessor","authors":"V. Nandakumar, D. Newmark, Yaping Zhan, M. Marek-Sadowska","doi":"10.1109/ISQED.2010.5450412","DOIUrl":null,"url":null,"abstract":"Process variations are of great concern in modern technologies. Early prediction of their effects on the circuit performance and parametric yield is extremely useful. In today's microprocessors, custom designed transistor level macros and memory array macros, like caches, occupy a significant fraction of the total core area. While block-based statistical static timing analysis (SSTA) techniques are fast and can be used for analyzing cell based designs, they cannot be used for transistor level macros. Currently, such macros are either abstracted with statistical timing models which are less accurate or are analyzed using statistical Monte-Carlo circuit simulations which are time consuming. In this paper, we develop a fast and accurate flow that can be used to perform SSTA on large transistor and memory array macros. The delay distributions of paths obtained using our flow for a large, industrial, 45 nm, transistor level macro have error of less than 6% compared to those obtained after rigorous Monte-Carlo SPICE simulations. The resulting flow enables full-chip SSTA, provides visibility into the macro even at the chip level, and eliminates the need to abstract the macros with statistical timing models.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Process variations are of great concern in modern technologies. Early prediction of their effects on the circuit performance and parametric yield is extremely useful. In today's microprocessors, custom designed transistor level macros and memory array macros, like caches, occupy a significant fraction of the total core area. While block-based statistical static timing analysis (SSTA) techniques are fast and can be used for analyzing cell based designs, they cannot be used for transistor level macros. Currently, such macros are either abstracted with statistical timing models which are less accurate or are analyzed using statistical Monte-Carlo circuit simulations which are time consuming. In this paper, we develop a fast and accurate flow that can be used to perform SSTA on large transistor and memory array macros. The delay distributions of paths obtained using our flow for a large, industrial, 45 nm, transistor level macro have error of less than 6% compared to those obtained after rigorous Monte-Carlo SPICE simulations. The resulting flow enables full-chip SSTA, provides visibility into the macro even at the chip level, and eliminates the need to abstract the macros with statistical timing models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微处理器中晶体管级宏的统计静态时序分析流程
工艺变化是现代技术中非常关注的问题。早期预测它们对电路性能和参数良率的影响是非常有用的。在今天的微处理器中,定制设计的晶体管级宏和存储器阵列宏,如缓存,占据了整个核心区域的很大一部分。虽然基于块的统计静态时序分析(SSTA)技术速度快,可用于分析基于单元的设计,但它们不能用于晶体管级宏。目前,这些宏要么是用统计时序模型抽象出来的,但精度不高;要么是用统计蒙特卡罗电路仿真来分析,但耗时较长。在本文中,我们开发了一种快速准确的流程,可用于在大型晶体管和存储阵列宏上执行SSTA。与严格的蒙特卡洛SPICE模拟相比,使用我们的流程获得的大型工业45 nm晶体管级宏的路径延迟分布误差小于6%。生成的流支持全芯片SSTA,甚至在芯片级别提供对宏的可见性,并且消除了使用统计时序模型抽象宏的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low power clock network placement framework Body bias driven design synthesis for optimum performance per area Adaptive task allocation for multiprocessor SoCs Reliability analysis of analog circuits by lifetime yield prediction using worst-case distance degradation rate Low power clock gates optimization for clock tree distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1