Vaccine Supply Optimization and Forecasting using Random Forest and ARIMA Models

Shiv Charan Banerjee, Shobhan Banerjee, Pratik Rai
{"title":"Vaccine Supply Optimization and Forecasting using Random Forest and ARIMA Models","authors":"Shiv Charan Banerjee, Shobhan Banerjee, Pratik Rai","doi":"10.1109/GCAT55367.2022.9972154","DOIUrl":null,"url":null,"abstract":"In order to tackle the Corona Virus Disease, it took a considerable amount of time for the governments to come up with effective and efficient vaccines. After the vaccines were developed, the next challenge was to supply the vaccines to various designated centers based on demographics, population distribution, and other factors. The whole system for vaccine supply played a vital role during the COVID-19 pandemic. We also saw a lot of haphazard and mismanagement in some places especially when the cases per day surged high, as people weren't prepared for such a situation. Now that we have got enough data, we can use it to optimize the vaccine supply across various Covid Vaccination Centers and be prepared for any such circumstances in the future. In this paper, we have proposed a two-step approach where considering the past supply and wastage data we performed a classification task that indicates whether doses are to get wasted at a given center. If yes, we then perform demand forecasting based on the number of administered doses so that the wastage can be reduced, and supply can be optimized.","PeriodicalId":133597,"journal":{"name":"2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT55367.2022.9972154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In order to tackle the Corona Virus Disease, it took a considerable amount of time for the governments to come up with effective and efficient vaccines. After the vaccines were developed, the next challenge was to supply the vaccines to various designated centers based on demographics, population distribution, and other factors. The whole system for vaccine supply played a vital role during the COVID-19 pandemic. We also saw a lot of haphazard and mismanagement in some places especially when the cases per day surged high, as people weren't prepared for such a situation. Now that we have got enough data, we can use it to optimize the vaccine supply across various Covid Vaccination Centers and be prepared for any such circumstances in the future. In this paper, we have proposed a two-step approach where considering the past supply and wastage data we performed a classification task that indicates whether doses are to get wasted at a given center. If yes, we then perform demand forecasting based on the number of administered doses so that the wastage can be reduced, and supply can be optimized.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机森林和ARIMA模型的疫苗供应优化和预测
为了应对冠状病毒病,各国政府花了相当长的时间才研制出有效的疫苗。疫苗开发出来后,下一个挑战是根据人口统计、人口分布和其他因素向各个指定的中心供应疫苗。整个疫苗供应体系在疫情期间发挥了至关重要的作用。在一些地方,我们也看到了很多随意和管理不善的情况,特别是当每天的病例激增时,因为人们没有为这种情况做好准备。现在我们已经获得了足够的数据,我们可以利用它来优化各个Covid疫苗接种中心的疫苗供应,并为未来的任何此类情况做好准备。在本文中,我们提出了一个两步的方法,其中考虑到过去的供应和浪费数据,我们执行了一个分类任务,表明是否要在给定的中心浪费剂量。如果是,那么我们就会根据给药剂量的数量进行需求预测,从而减少浪费,优化供应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating the role of Named Entity Recognition in Question Answering Models Neural Machine Translation for English-Assamese Language Pair using Transformer Cascading Neural Network with Particle Swarm Optimization Combination of APF and SVC for the Power Quality Improvement in Microgrid Distracted Driver Posture Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1