Combining constraint programming and genetic algorithm for dynamic scheduling problems

Abdallah Elkhyari, A. Bellabdaoui
{"title":"Combining constraint programming and genetic algorithm for dynamic scheduling problems","authors":"Abdallah Elkhyari, A. Bellabdaoui","doi":"10.1109/LOGISTIQUA.2017.7962867","DOIUrl":null,"url":null,"abstract":"This paper introduces a new method based on constraint programming (CP) and genetic algorithm (GA) for solving dynamic scheduling problems. The proposed approach allows us to handle scheduling problems with large sizes (i.e. search spaces are too large). Our idea is to break up the search space into disjoined sub-spaces by the genetic algorithm. To each individual of the population is associated a sub-space. Each sub-space is represented by a sub-CSP which is easier to solve than the original scheduling problem. Our first experimentations are addressed to the Endoscopy Unit scheduling in dynamic way.","PeriodicalId":310750,"journal":{"name":"2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LOGISTIQUA.2017.7962867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a new method based on constraint programming (CP) and genetic algorithm (GA) for solving dynamic scheduling problems. The proposed approach allows us to handle scheduling problems with large sizes (i.e. search spaces are too large). Our idea is to break up the search space into disjoined sub-spaces by the genetic algorithm. To each individual of the population is associated a sub-space. Each sub-space is represented by a sub-CSP which is easier to solve than the original scheduling problem. Our first experimentations are addressed to the Endoscopy Unit scheduling in dynamic way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合约束规划和遗传算法求解动态调度问题
提出了一种基于约束规划和遗传算法的动态调度问题求解方法。所提出的方法允许我们处理大尺寸的调度问题(即搜索空间太大)。我们的想法是通过遗传算法将搜索空间分解成不相连的子空间。种群中的每一个个体都对应一个子空间。每个子空间由一个比原调度问题更容易求解的子csp表示。我们的第一个实验是针对内窥镜单元的动态调度方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a simulation model of an outpatient chemotherapy unit Supply chain management and organizational change: Integrating an activity after its subcontracting in a Moroccan construction company Workload balancing in nurse scheduling problem models and discussion Spatial analysis of bus accidents in France Toward an agent-based framework for human resource management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1