Stochastic Process Model and Its Applications to Analysis of Longitudinal Data

I. Zhbannikov, K. Arbeev
{"title":"Stochastic Process Model and Its Applications to Analysis of Longitudinal Data","authors":"I. Zhbannikov, K. Arbeev","doi":"10.1145/3107411.3107496","DOIUrl":null,"url":null,"abstract":"Longitudinal studies are widely used in medicine, biology, population health and other areas related to bioinformatics. A broad spectrum of methods for joint analysis of longitudinal and time-to-event (survival) data has been proposed the in last few decades. The Stochastic process model (SPM) represents one possible framework for modelling joint evolution of repeatedly measured variables and time-to-event outcome typically observed in longitudinal studies. SPM is applicable for analyses of longitudinal data in many research areas such as demography and medicine and allows researchers to utilize the full potential of longitudinal data by evaluating dynamic mechanisms of changing physiological variables with time (age), allowing the study of differences, for example, in genotype-specific hazards. SPM allows incorporation of available knowledge about regularities of aging-related changes in the human body for addressing fundamental problems of changes in resilience and physiological norms. It permits evaluating mechanisms that indirectly affect longitudinal trajectories of physiological variables using data on mortality or onset of diseases. In this tutorial we explain the basic concepts of SPM, its current state and possible applications, corresponding software tools and show practical examples of analysis of joint analysis of longitudinal and time-to-event data with this methodology.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Longitudinal studies are widely used in medicine, biology, population health and other areas related to bioinformatics. A broad spectrum of methods for joint analysis of longitudinal and time-to-event (survival) data has been proposed the in last few decades. The Stochastic process model (SPM) represents one possible framework for modelling joint evolution of repeatedly measured variables and time-to-event outcome typically observed in longitudinal studies. SPM is applicable for analyses of longitudinal data in many research areas such as demography and medicine and allows researchers to utilize the full potential of longitudinal data by evaluating dynamic mechanisms of changing physiological variables with time (age), allowing the study of differences, for example, in genotype-specific hazards. SPM allows incorporation of available knowledge about regularities of aging-related changes in the human body for addressing fundamental problems of changes in resilience and physiological norms. It permits evaluating mechanisms that indirectly affect longitudinal trajectories of physiological variables using data on mortality or onset of diseases. In this tutorial we explain the basic concepts of SPM, its current state and possible applications, corresponding software tools and show practical examples of analysis of joint analysis of longitudinal and time-to-event data with this methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机过程模型及其在纵向数据分析中的应用
纵向研究广泛应用于医学、生物学、人口健康等与生物信息学相关的领域。在过去的几十年里,人们提出了一种广泛的方法来联合分析纵向和时间到事件(生存)数据。随机过程模型(SPM)代表了一种可能的框架,用于模拟重复测量变量和纵向研究中典型观察到的事件时间结果的联合演化。SPM适用于人口统计学和医学等许多研究领域的纵向数据分析,并允许研究人员通过评估生理变量随时间(年龄)变化的动态机制来充分利用纵向数据的潜力,从而研究差异,例如基因型特异性危害。SPM允许结合有关人体衰老相关变化规律的现有知识,以解决恢复力和生理规范变化的基本问题。它允许利用死亡率或疾病发病数据来评估间接影响生理变量纵向轨迹的机制。在本教程中,我们将解释SPM的基本概念、其当前状态和可能的应用、相应的软件工具,并展示使用该方法对纵向和事件时间数据进行联合分析的实际示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Free Text into MedDRA by Natural Language Processing: A Modular Approach in Designing and Evaluating Software Extensions Evolving Conformation Paths to Model Protein Structural Transitions Supervised Machine Learning Approaches Predict and Characterize Nanomaterial Exposures: MWCNT Markers in Lung Lavage Fluid. Geometry Analysis for Protein Secondary Structures Matching Problem Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1