Brain Image Parcellation Using Multi-Atlas Guided Adversarial Fully Convolutional Network

Xianli Liu, Haifeng Zhao, Shaojie Zhang, Zhenyu Tan
{"title":"Brain Image Parcellation Using Multi-Atlas Guided Adversarial Fully Convolutional Network","authors":"Xianli Liu, Haifeng Zhao, Shaojie Zhang, Zhenyu Tan","doi":"10.1109/ISBI.2019.8759507","DOIUrl":null,"url":null,"abstract":"Brain image parcellation is an essential procedure in neural image analysis. Recently, deep learning methods, such as fully convolutional network (FCN), have shown high computational efficiency and good performance in brain image parcellation. In this paper, a new multi-atlas guided adversarial FCN is proposed to enhance the parcellation quality. The generative model in our method is an improved FCN which is integrated with brain atlases information and multi-level feature skip connection. The discriminative model is a convolutional neural network (CNN) with multi-scale l1 loss function. Comparing to most existing deep learning based brain image parcellation methods, which use voxel-wise loss function only (e.g., cross entropy), the discriminative model in our method considers multi-scale deep features to guide the parcellation. In the experiment, two public MR brain image datasets LONI LPBA40 and NIREP-NAO are used to evaluate our method. Evaluation results demonstrate that our method outperforms the state-of-the-art methods in both datasets.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Brain image parcellation is an essential procedure in neural image analysis. Recently, deep learning methods, such as fully convolutional network (FCN), have shown high computational efficiency and good performance in brain image parcellation. In this paper, a new multi-atlas guided adversarial FCN is proposed to enhance the parcellation quality. The generative model in our method is an improved FCN which is integrated with brain atlases information and multi-level feature skip connection. The discriminative model is a convolutional neural network (CNN) with multi-scale l1 loss function. Comparing to most existing deep learning based brain image parcellation methods, which use voxel-wise loss function only (e.g., cross entropy), the discriminative model in our method considers multi-scale deep features to guide the parcellation. In the experiment, two public MR brain image datasets LONI LPBA40 and NIREP-NAO are used to evaluate our method. Evaluation results demonstrate that our method outperforms the state-of-the-art methods in both datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多图谱引导的对抗全卷积网络的脑图像分割
脑图像分割是神经图像分析中的一个重要步骤。近年来,以全卷积网络(FCN)为代表的深度学习方法在脑图像分割中表现出了较高的计算效率和良好的性能。本文提出了一种新的多图集制导对抗FCN,以提高包裹质量。该方法的生成模型是一种结合脑图谱信息和多层次特征跳跃连接的改进FCN模型。判别模型是一个具有多尺度l1损失函数的卷积神经网络(CNN)。与大多数基于深度学习的脑图像分割方法(仅使用体素损失函数(如交叉熵))相比,我们方法中的判别模型考虑多尺度深度特征来指导分割。在实验中,使用两个公开的mri脑图像数据集LONI LPBA40和NIREP-NAO来评估我们的方法。评估结果表明,我们的方法在两个数据集中都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1