Organic carbon lability and community-level physiological profiling of bacterial populations in Lake Superior

Kimberly D. Powell, M. Auer
{"title":"Organic carbon lability and community-level physiological profiling of bacterial populations in Lake Superior","authors":"Kimberly D. Powell, M. Auer","doi":"10.1080/03680770.2009.11902366","DOIUrl":null,"url":null,"abstract":"Our appreciation of the ecological importance of bacterioplankton in aquatic environments is increasing with comprehension of their role in decomposing organic matter and recycling nutrients. Expansion of our understanding has been hastened by the development of more effective methods for evaluating microbial processes. GARLAND & MILLS (1991) introduced a technique for characterizing and spatially and temporally differentiating bacterioplankton communities in aquatic (seawater, freshwater, and estuarine) environments. Their method, community-level physiological profiling (CLPP), examines the ability ofbacterioplankton communities to metabolize sole-carbon sources using Biolog microplates (containing 96 wells, one control, and 95 sole-carbon sources). When a carbon source is utilized, it produces a violet color and a \"fingerprint\" of the bacterial community (WINDING 1994). These fingerprints are further analyzed using multivariate statistics to identify samples from different habitats and along spatial gradients within habitats (GARLAND & MILLS 1994 ). Dissolved organic carbon (DOC) is usually the limiting nutrient for bacterioplankton growth in freshwater environments. The composition and amount of carbon available to bacterioplankton varies spatially and temporally. The DOC pool is partitioned into refractory and labile fractions. Refractory DOC originates primarily from watersheds and, due to its complex nature, is not immediately available to bacterioplankton. Labile dissolved organic carbon (LDOC) is produced by both active and senescing phytoplankton ( excretion) and is associated with zooplankton exudates. The LDOC typically accounts for -9-14% of the total DOC (TDOC) in freshwater lakes {TRANVIK 1988, S0NDERGAARD & MIDDELBOE 1995) and is readily available for uptake by bacterioplankton (BIDDANDA & COTNER 2003). There is no simple, direct measurement of the labile carbon content of water. Bioassays, where organic carbon utilization and/or microorganism growth serve as a reflection of bioavailability, represent the only approach suitable for detection. Here, we apply lability bioassays and CLPP to examine pattems in LDOC abundance and the association o f bacterial populations with selected sources o f DOC ( e.g., riverine inputs, autochthonous production, and diagenesis of particulate matter in the deep chlorophyll maximum) in Lake Superior.","PeriodicalId":404196,"journal":{"name":"Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03680770.2009.11902366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Our appreciation of the ecological importance of bacterioplankton in aquatic environments is increasing with comprehension of their role in decomposing organic matter and recycling nutrients. Expansion of our understanding has been hastened by the development of more effective methods for evaluating microbial processes. GARLAND & MILLS (1991) introduced a technique for characterizing and spatially and temporally differentiating bacterioplankton communities in aquatic (seawater, freshwater, and estuarine) environments. Their method, community-level physiological profiling (CLPP), examines the ability ofbacterioplankton communities to metabolize sole-carbon sources using Biolog microplates (containing 96 wells, one control, and 95 sole-carbon sources). When a carbon source is utilized, it produces a violet color and a "fingerprint" of the bacterial community (WINDING 1994). These fingerprints are further analyzed using multivariate statistics to identify samples from different habitats and along spatial gradients within habitats (GARLAND & MILLS 1994 ). Dissolved organic carbon (DOC) is usually the limiting nutrient for bacterioplankton growth in freshwater environments. The composition and amount of carbon available to bacterioplankton varies spatially and temporally. The DOC pool is partitioned into refractory and labile fractions. Refractory DOC originates primarily from watersheds and, due to its complex nature, is not immediately available to bacterioplankton. Labile dissolved organic carbon (LDOC) is produced by both active and senescing phytoplankton ( excretion) and is associated with zooplankton exudates. The LDOC typically accounts for -9-14% of the total DOC (TDOC) in freshwater lakes {TRANVIK 1988, S0NDERGAARD & MIDDELBOE 1995) and is readily available for uptake by bacterioplankton (BIDDANDA & COTNER 2003). There is no simple, direct measurement of the labile carbon content of water. Bioassays, where organic carbon utilization and/or microorganism growth serve as a reflection of bioavailability, represent the only approach suitable for detection. Here, we apply lability bioassays and CLPP to examine pattems in LDOC abundance and the association o f bacterial populations with selected sources o f DOC ( e.g., riverine inputs, autochthonous production, and diagenesis of particulate matter in the deep chlorophyll maximum) in Lake Superior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
苏必利尔湖有机碳不稳定性及群落水平细菌种群生理特征
我们对浮游细菌在水生环境中的生态重要性的认识随着它们在分解有机物和循环养分中的作用的理解而增加。更有效的评估微生物过程的方法的发展加速了我们的理解。GARLAND & MILLS(1991)介绍了一种在水生(海水、淡水和河口)环境中表征和时空区分浮游细菌群落的技术。他们的方法,群落水平生理分析(CLPP),使用Biolog微孔板(包含96个孔,一个对照和95个底碳源)检测浮游细菌群落代谢底碳源的能力。当碳源被利用时,它会产生紫色和细菌群落的“指纹”(WINDING 1994)。使用多元统计进一步分析这些指纹,以识别来自不同栖息地和栖息地内空间梯度的样本(GARLAND & MILLS 1994)。溶解有机碳(DOC)通常是淡水环境中浮游细菌生长的限制性营养物质。浮游细菌可利用碳的组成和数量随时间和空间的变化而变化。DOC池分为难熔馏分和不稳定馏分。难降解DOC主要来源于流域,由于其复杂的性质,浮游细菌无法立即获得。不稳定溶解有机碳(LDOC)是由活性和衰老浮游植物(排泄)产生的,并与浮游动物分泌物有关。LDOC通常占淡水湖总DOC (TDOC)的-9-14% (TRANVIK 1988, sondergaard & MIDDELBOE 1995),并且很容易被浮游细菌吸收(BIDDANDA & COTNER 2003)。水的不稳定碳含量没有简单直接的测量方法。生物测定,其中有机碳利用和/或微生物生长作为生物利用度的反映,是唯一适合检测的方法。在这里,我们应用稳定性生物测定和CLPP来研究苏必利尔湖中LDOC丰度的模式,以及细菌种群与选定的DOC来源(如河流输入、自然产生和深层叶绿素最大值中颗粒物的成岩作用)的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstract: Zooplankton communities of hyposaline Pantanal lakes in Brazil Distribution of mercury in the sediments of Amistad International Reservoir, Texas, USA Use of a 1D hydrodynamic model for assessing phytoplankton dynamics in Tisza River (Hungary) Salinization of the Glenelg River in Southwest Victoria, Australia Eutrophication of the Nile: Comparative nutrient data of the Damietta Branch, Egypt, from 1978 and 2003
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1