A genetic fuzzy rule-based classifier for land cover image classification

D. Stavrakoudis, Ioannis B. Theocharis
{"title":"A genetic fuzzy rule-based classifier for land cover image classification","authors":"D. Stavrakoudis, Ioannis B. Theocharis","doi":"10.1109/FUZZY.2009.5277299","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of a Boosted Genetic Fuzzy Classifier (BGFC) for land cover classification from multispectral images. The model's learning algorithm is divided into two stages. The first stage iteratively generates fuzzy rules, employing a boosting algorithm that localizes new rules in uncovered subspaces of the feature space. Each rule is obtained through an efficient genetic rule extraction method, which both adapts the parameters of the fuzzy sets in the premise space and determines the required features of the rule, further improving the interpretability of the obtained model. The second stage fine-tunes the obtained rule base through an evolutionary algorithm (EA), improving the cooperation among the fuzzy rules and, thus, increasing the classification performance attained after the first stage. The BGFC is tested using an IKONOS multispectral VHR image, in the agricultural area surrounding a lake-wetland ecosystem in northern Greece. The results indicate that the proposed system is able to handle multi-dimensional feature spaces, effectively exploiting information from different feature sources.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes the use of a Boosted Genetic Fuzzy Classifier (BGFC) for land cover classification from multispectral images. The model's learning algorithm is divided into two stages. The first stage iteratively generates fuzzy rules, employing a boosting algorithm that localizes new rules in uncovered subspaces of the feature space. Each rule is obtained through an efficient genetic rule extraction method, which both adapts the parameters of the fuzzy sets in the premise space and determines the required features of the rule, further improving the interpretability of the obtained model. The second stage fine-tunes the obtained rule base through an evolutionary algorithm (EA), improving the cooperation among the fuzzy rules and, thus, increasing the classification performance attained after the first stage. The BGFC is tested using an IKONOS multispectral VHR image, in the agricultural area surrounding a lake-wetland ecosystem in northern Greece. The results indicate that the proposed system is able to handle multi-dimensional feature spaces, effectively exploiting information from different feature sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传模糊规则的土地覆盖图像分类器
本文提出了一种基于增强遗传模糊分类器(BGFC)的多光谱图像土地覆盖分类方法。该模型的学习算法分为两个阶段。第一阶段迭代生成模糊规则,采用一种增强算法将新规则定位在特征空间的未覆盖子空间中。每条规则都是通过一种高效的遗传规则提取方法获得的,该方法既适应了前提空间中模糊集的参数,又确定了规则所需的特征,进一步提高了所获得模型的可解释性。第二阶段通过进化算法对得到的规则库进行微调,提高模糊规则之间的协同性,从而提高第一阶段后获得的分类性能。BGFC使用IKONOS多光谱VHR图像在希腊北部湖泊湿地生态系统周围的农业区进行了测试。结果表明,该系统能够处理多维特征空间,有效地利用来自不同特征源的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1