A Comparative Analysis on the Detection of Web Service Anti-Patterns Using Various Metrics

Sahithi Tummalapalli, L. Kumar, Lalita Bhanu Murthy Neti, A. Krishna
{"title":"A Comparative Analysis on the Detection of Web Service Anti-Patterns Using Various Metrics","authors":"Sahithi Tummalapalli, L. Kumar, Lalita Bhanu Murthy Neti, A. Krishna","doi":"10.1145/3578527.3578534","DOIUrl":null,"url":null,"abstract":"Nowadays, the application of machine learning for developing prediction models is one of the most critical research areas. Early prediction of anti-patterns using machine learning can help developers, and testers fix the design issues and utilize the resources effectively. This work analyzes four different sets of metrics, i.e., source code, WSDL, text, and sequence metrics, to develop web service anti-pattern prediction models. These sets of metrics are treated as an input for models trained using thirty-eight classification techniques to build a model. The experimental finding shows that the models trained using sequence metrics produce better results. The experimental finding also confirmed that the models trained on balanced data achieved better performance than the original data. Further, it is also found that the models trained using CNN and LSTM deep learning approach achieve better results compared to other techniques.","PeriodicalId":326318,"journal":{"name":"Proceedings of the 16th Innovations in Software Engineering Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th Innovations in Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3578527.3578534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the application of machine learning for developing prediction models is one of the most critical research areas. Early prediction of anti-patterns using machine learning can help developers, and testers fix the design issues and utilize the resources effectively. This work analyzes four different sets of metrics, i.e., source code, WSDL, text, and sequence metrics, to develop web service anti-pattern prediction models. These sets of metrics are treated as an input for models trained using thirty-eight classification techniques to build a model. The experimental finding shows that the models trained using sequence metrics produce better results. The experimental finding also confirmed that the models trained on balanced data achieved better performance than the original data. Further, it is also found that the models trained using CNN and LSTM deep learning approach achieve better results compared to other techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用不同度量方法检测Web服务反模式的比较分析
目前,应用机器学习开发预测模型是最关键的研究领域之一。使用机器学习对反模式进行早期预测可以帮助开发人员和测试人员解决设计问题并有效地利用资源。这项工作分析了四组不同的度量,即源代码、WSDL、文本和序列度量,以开发web服务反模式预测模型。这些指标集被视为使用38种分类技术训练的模型的输入,以构建模型。实验结果表明,使用序列度量方法训练的模型效果较好。实验结果也证实了在平衡数据上训练的模型比原始数据获得了更好的性能。此外,还发现与其他技术相比,使用CNN和LSTM深度学习方法训练的模型取得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Report on the Fifth Workshop on Emerging Software Engineering Education (WESEE 2023) Digital Twin Engineering Process Line Diagrams (PLDs): An Approach for Modular Process Modeling Similarities in Challenges faced by Developers: Investigations on Stack Overflow and GitHub Automatic Identification of Video Game Development Problems using Word Embedding and Ensemble Classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1