Benchmarking Photonic Quantum Machine Learning Simulators

Henrik Varga, A. Kiss, Zoltán Kolarovszki
{"title":"Benchmarking Photonic Quantum Machine Learning Simulators","authors":"Henrik Varga, A. Kiss, Zoltán Kolarovszki","doi":"10.1109/SACI58269.2023.10158603","DOIUrl":null,"url":null,"abstract":"In the past few years, quantum computing has gotten more attention, and the need for efficient simulations is getting increasingly important as well. A significant branch of quantum computing is photonic quantum computing. For simulating photonic quantum circuits, Strawberry Fields is the most popular framework. In this paper, we compared it with another framework currently under development called Piquasso regarding gradient calculation time, which is an essential part of continuous-variable quantum neural networks. We present the apparent scalability of Piquasso over Strawberry Fields by storing fewer data, but leading to possible accuracy differences as a trade-off, which could motivate future work.","PeriodicalId":339156,"journal":{"name":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI58269.2023.10158603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the past few years, quantum computing has gotten more attention, and the need for efficient simulations is getting increasingly important as well. A significant branch of quantum computing is photonic quantum computing. For simulating photonic quantum circuits, Strawberry Fields is the most popular framework. In this paper, we compared it with another framework currently under development called Piquasso regarding gradient calculation time, which is an essential part of continuous-variable quantum neural networks. We present the apparent scalability of Piquasso over Strawberry Fields by storing fewer data, but leading to possible accuracy differences as a trade-off, which could motivate future work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对标光子量子机器学习模拟器
在过去的几年里,量子计算得到了越来越多的关注,对高效模拟的需求也变得越来越重要。量子计算的一个重要分支是光子量子计算。对于模拟光子量子电路,草莓场是最流行的框架。在本文中,我们将其与目前正在开发的另一个名为Piquasso的框架进行了比较,考虑梯度计算时间,Piquasso是连续变量量子神经网络的重要组成部分。我们通过存储更少的数据来展示Piquasso在Strawberry Fields上的明显可扩展性,但作为一种权衡,可能会导致准确性差异,这可能会激励未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of 3D multi-user software tools in digital medicine – a scoping review Machine Learning in Heat Transfer: Taxonomy, Review and Evaluation Auction-Based Job Scheduling for Smart Manufacturing Safe trajectory design for indoor drones using reinforcement-learning-based methods Investigation of reward functions for controlling blood glucose level using reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1