Network Regularization in Imaging Genetics Improves Prediction Performances and Model Interpretability on Alzheimer’s Disease

N. Guigui, C. Philippe, A. Gloaguen, Slim Karkar, V. Guillemot, Tommy Löfstedt, V. Frouin
{"title":"Network Regularization in Imaging Genetics Improves Prediction Performances and Model Interpretability on Alzheimer’s Disease","authors":"N. Guigui, C. Philippe, A. Gloaguen, Slim Karkar, V. Guillemot, Tommy Löfstedt, V. Frouin","doi":"10.1109/ISBI.2019.8759593","DOIUrl":null,"url":null,"abstract":"Imaging genetics is a growing popular research avenue which aims to find genetic variants associated with quantitative phenotypes that characterize a disease. In this work, we combine structural MRI with genetic data structured by prior knowledge of interactions in a Canonical Correlation Analysis (CCA) model with graph regularization. This results in improved prediction performance and yields a more interpretable model.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Imaging genetics is a growing popular research avenue which aims to find genetic variants associated with quantitative phenotypes that characterize a disease. In this work, we combine structural MRI with genetic data structured by prior knowledge of interactions in a Canonical Correlation Analysis (CCA) model with graph regularization. This results in improved prediction performance and yields a more interpretable model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影像学遗传学中的网络正则化提高了阿尔茨海默病的预测性能和模型可解释性
成像遗传学是一种日益流行的研究途径,旨在发现与表征疾病的定量表型相关的遗传变异。在这项工作中,我们将结构MRI与遗传数据结合起来,这些数据是由典型相关分析(CCA)模型中具有图正则化的相互作用的先验知识构成的。这将提高预测性能,并产生更具可解释性的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1