Efficient parallel streaming algorithms for large-scale inverse problems

H. Sundar
{"title":"Efficient parallel streaming algorithms for large-scale inverse problems","authors":"H. Sundar","doi":"10.1109/HPEC.2017.8091033","DOIUrl":null,"url":null,"abstract":"Large-scale inverse problems and uncertainty quantification (UQ), i.e., quantifying uncertainties in complex mathematical models and their large-scale computational implementations, is one of the outstanding challenges in computational science and will be a driver for the acquisition of future supercomputers. These methods generate significant amounts of simulation data that is used by other parts of the computation in a complex fashion, requiring either large inmemory storage and/or redundant computations. We present a streaming algorithm for such computation that achieves high performance without requiring additional in-memory storage or additional computations. By reducing the memory footprint of the application we are able to achieve a significant speedup (∼3×) by operating in a more favorable region of the strong scaling curve.","PeriodicalId":364903,"journal":{"name":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2017.8091033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale inverse problems and uncertainty quantification (UQ), i.e., quantifying uncertainties in complex mathematical models and their large-scale computational implementations, is one of the outstanding challenges in computational science and will be a driver for the acquisition of future supercomputers. These methods generate significant amounts of simulation data that is used by other parts of the computation in a complex fashion, requiring either large inmemory storage and/or redundant computations. We present a streaming algorithm for such computation that achieves high performance without requiring additional in-memory storage or additional computations. By reducing the memory footprint of the application we are able to achieve a significant speedup (∼3×) by operating in a more favorable region of the strong scaling curve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模反问题的高效并行流算法
大规模逆问题和不确定性量化(UQ),即量化复杂数学模型及其大规模计算实现中的不确定性,是计算科学中的突出挑战之一,将成为未来超级计算机获取的驱动因素。这些方法产生大量的模拟数据,这些数据以复杂的方式被其他计算部分使用,需要大量的内存存储和/或冗余计算。我们提出了一种用于此类计算的流算法,该算法无需额外的内存存储或额外的计算即可实现高性能。通过减少应用程序的内存占用,我们能够通过在强缩放曲线的更有利区域中操作来实现显着的加速(~ 3倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized task graph mapping on a many-core neuromorphic supercomputer Software-defined extreme scale networks for bigdata applications Power-aware computing: Measurement, control, and performance analysis for Intel Xeon Phi xDCI, a data science cyberinfrastructure for interdisciplinary research Leakage energy reduction for hard real-time caches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1