Massively parallel hardware architecture for genetic algorithms

N. Nedjah, L. M. Mourelle
{"title":"Massively parallel hardware architecture for genetic algorithms","authors":"N. Nedjah, L. M. Mourelle","doi":"10.1109/DSD.2005.55","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a massively parallel architecture for hardware implementation of genetic algorithms. This is design is quite innovative as it provides a viable solution to the fitness computation problem, which depends heavily on the problem-specific knowledge. The proposed architecture is completely independent of such specifics. It implements the fitness computation using a neural network. The hardware implementation of the used neural network is stochastic and thus minimise the required hardware area without much increase in response time. Finally, we compare the proposed hardware and existing ones.","PeriodicalId":119054,"journal":{"name":"8th Euromicro Conference on Digital System Design (DSD'05)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th Euromicro Conference on Digital System Design (DSD'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2005.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a massively parallel architecture for hardware implementation of genetic algorithms. This is design is quite innovative as it provides a viable solution to the fitness computation problem, which depends heavily on the problem-specific knowledge. The proposed architecture is completely independent of such specifics. It implements the fitness computation using a neural network. The hardware implementation of the used neural network is stochastic and thus minimise the required hardware area without much increase in response time. Finally, we compare the proposed hardware and existing ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传算法的大规模并行硬件架构
在本文中,我们提出了一个大规模并行架构的硬件实现遗传算法。这个设计非常创新,因为它为适应度计算问题提供了一个可行的解决方案,而适应度计算问题在很大程度上依赖于特定问题的知识。所建议的体系结构完全独立于这些细节。利用神经网络实现适应度计算。所使用的神经网络的硬件实现是随机的,因此最小化所需的硬件面积,而不会增加太多的响应时间。最后,我们比较了所提出的硬件和现有的硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A processor for testing mixed-signal cores in system-on-chip Educational tool for the demonstration of DfT principles based on scan methodologies Capturing processor architectures from protocol processing applications: a case study Power-composition profile driven co-synthesis with power management selection for dynamic and leakage energy reduction High-level synthesis in latency insensitive system methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1