Experimental researches of a 3-DOF parallel micromanipulator driven by linear ultrasonic motors

Yun Wang, Z. Yao, Ranran Geng, Ling-chao Meng
{"title":"Experimental researches of a 3-DOF parallel micromanipulator driven by linear ultrasonic motors","authors":"Yun Wang, Z. Yao, Ranran Geng, Ling-chao Meng","doi":"10.1109/SPAWDA.2015.7364496","DOIUrl":null,"url":null,"abstract":"A 3-DOF micromanipulator driven by linear ultrasonic motors is proposed in this paper. Compared with the traditional micromanipulator based on static deformation of piezoelectric ceramics (high displacement resolution, micro-size motion range), this micromanipulator owns motion range in millimeter size (2 mm) while having high displacement resolution (50 nm). First of all, working principle of the micromanipulator is described. Parallel mechanism is adopted in this micromanipulator, linear ultrasonic motors are taken as the sliding pair to actuate the micromanipulator and flexible hinge are introduced as revolute pair. Then kinematics analysis of the micromanipulator is carried out. Finally, a series of experimental studies are illustrated in detail, steel balls and shrimp roe had been grasped and moved by this micromanipulator under telescope. The experimental results show that the micromanipulator can be applied to grab and move tiny particles. This micromanipulator has good performance and can be used in medical and biological engineering field.","PeriodicalId":205914,"journal":{"name":"2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWDA.2015.7364496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A 3-DOF micromanipulator driven by linear ultrasonic motors is proposed in this paper. Compared with the traditional micromanipulator based on static deformation of piezoelectric ceramics (high displacement resolution, micro-size motion range), this micromanipulator owns motion range in millimeter size (2 mm) while having high displacement resolution (50 nm). First of all, working principle of the micromanipulator is described. Parallel mechanism is adopted in this micromanipulator, linear ultrasonic motors are taken as the sliding pair to actuate the micromanipulator and flexible hinge are introduced as revolute pair. Then kinematics analysis of the micromanipulator is carried out. Finally, a series of experimental studies are illustrated in detail, steel balls and shrimp roe had been grasped and moved by this micromanipulator under telescope. The experimental results show that the micromanipulator can be applied to grab and move tiny particles. This micromanipulator has good performance and can be used in medical and biological engineering field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直线超声电机驱动三自由度并联微机械臂的实验研究
提出了一种由直线超声电机驱动的三自由度微机械臂。与传统基于压电陶瓷静态变形的微机械臂(高位移分辨率、微尺寸运动范围)相比,该微机械臂的运动范围为毫米级(2mm),同时具有高位移分辨率(50 nm)。首先,介绍了微机械臂的工作原理。该微机械臂采用并联机构,以直线超声电机作为驱动微机械臂的滑动副,引入柔性铰链作为驱动微机械臂的转动副。然后对微机械臂进行运动学分析。最后详细说明了一系列的实验研究,在望远镜下用该微机械臂抓取和移动了钢球和虾籽。实验结果表明,该微机械臂可以实现微小颗粒的抓取和移动。该微机械臂具有良好的性能,可用于医学和生物工程领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential of Al2O3/GaN/Sapphire layered structure for high temperature SAW sensors Application of SAW gas chromatography in the early screening of lung cancer Research on the loss-less compression algorithm of the ultrasonic testing of rail First-principles study on the electronic structure and optical properties of Mn-doped NaNbO3 Development of cryptophane A-coated SAW methane gas sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1