An Evaluation of Background Subtraction Algorithms on Fused Infrared-Visible Video Streams

S. Becker, N. Scherer-Negenborn, Pooja Thakkar, W. Hübner, Michael Arens
{"title":"An Evaluation of Background Subtraction Algorithms on Fused Infrared-Visible Video Streams","authors":"S. Becker, N. Scherer-Negenborn, Pooja Thakkar, W. Hübner, Michael Arens","doi":"10.1109/DICTA.2015.7371229","DOIUrl":null,"url":null,"abstract":"The detection of motion is an essential preprocessing step in many vision based systems. While showing good performance in the visible or the infrared spectrum, some of the state-of-the-art background subtraction methods are quite sensitive to a change in the spectral range. In this paper, the robustness of various background subtraction algorithms is not only compared between visible and infrared video streams, but in addition to the robustness that can be achieved by fusing visible and infrared video streams. Thereby, we show the effects of several fusion methods on a large set of background subtraction algorithms. By analyzing quantitative results, we identify approaches which can benefit from fused sensor signals. Towards this end, we further analyze the effectiveness of 14 fusion strategies. The evaluation is done on the public available OSU Color-Thermal Database reflecting a typical outdoor surveillance scenario.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The detection of motion is an essential preprocessing step in many vision based systems. While showing good performance in the visible or the infrared spectrum, some of the state-of-the-art background subtraction methods are quite sensitive to a change in the spectral range. In this paper, the robustness of various background subtraction algorithms is not only compared between visible and infrared video streams, but in addition to the robustness that can be achieved by fusing visible and infrared video streams. Thereby, we show the effects of several fusion methods on a large set of background subtraction algorithms. By analyzing quantitative results, we identify approaches which can benefit from fused sensor signals. Towards this end, we further analyze the effectiveness of 14 fusion strategies. The evaluation is done on the public available OSU Color-Thermal Database reflecting a typical outdoor surveillance scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合红外-可见视频流的背景减法算法评价
在许多基于视觉的系统中,运动检测是必不可少的预处理步骤。虽然在可见光或红外光谱中表现出良好的性能,但一些最先进的背景减法对光谱范围的变化非常敏感。本文不仅比较了可见光视频流和红外视频流的鲁棒性,还比较了可见光视频流和红外视频流融合所能达到的鲁棒性。因此,我们展示了几种融合方法对大量背景减法算法的影响。通过分析定量结果,我们确定了从融合传感器信号中获益的方法。为此,我们进一步分析了14种融合策略的有效性。评估是在公共可用的俄勒冈州立大学颜色-热数据库上完成的,反映了典型的户外监视场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Illumination Compensated Segmentation of Microscopic Images of Activated Sludge Flocs Rotation Invariant Spatial Pyramid Matching for Image Classification Unsupervised Processing of Vehicle Appearance for Automatic Understanding in Traffic Surveillance A New Model for the Segmentation of Multiple, Overlapping, Near-Circular Objects An Analysis of Human Engagement Behaviour Using Descriptors from Human Feedback, Eye Tracking, and Saliency Modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1