{"title":"Radar-Based Multiple Target Classification in Complex Environments Using 1D-CNN Models","authors":"Muhammet Emin Yanik, Sandeep Rao","doi":"10.1109/RadarConf2351548.2023.10149609","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust multiple target classification algorithm for real-world complex cluttered environments that can be mapped into low-cost millimeter-wave (mmWave) sensors considering limited memory and processing power budget. A novel approach is developed to create both μ-Doppler and μ-range spectrogram of multiple objects concurrently using an extended Kalman filter (EKF) based tracking layer integration. One-dimensional (1D) time sequence features are extracted from both spectrograms per target object, and a 1D convolutional neural network (CNN) based classifier is built to classify multiple target objects (human or non-human) in the same scene accurately.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a robust multiple target classification algorithm for real-world complex cluttered environments that can be mapped into low-cost millimeter-wave (mmWave) sensors considering limited memory and processing power budget. A novel approach is developed to create both μ-Doppler and μ-range spectrogram of multiple objects concurrently using an extended Kalman filter (EKF) based tracking layer integration. One-dimensional (1D) time sequence features are extracted from both spectrograms per target object, and a 1D convolutional neural network (CNN) based classifier is built to classify multiple target objects (human or non-human) in the same scene accurately.