T. Ichimura, K. Fujita, P. E. Quinay, Lalith Maddegedara, M. Hori, Seizo Tanaka, Y. Shizawa, Hiroshi Kobayashi, K. Minami
{"title":"Implicit nonlinear wave simulation with 1.08T DOF and 0.270T unstructured finite elements to enhance comprehensive earthquake simulation","authors":"T. Ichimura, K. Fujita, P. E. Quinay, Lalith Maddegedara, M. Hori, Seizo Tanaka, Y. Shizawa, Hiroshi Kobayashi, K. Minami","doi":"10.1145/2807591.2807674","DOIUrl":null,"url":null,"abstract":"This paper presents a new heroic computing method for unstructured, low-order, finite-element, implicit nonlinear wave simulation: 1.97 PFLOPS (18.6% of peak) was attained on the full K computer when solving a 1.08T degrees-of-freedom (DOF) and 0.270T-element problem. This is 40.1 times more DOF and elements, a 2.68-fold improvement in peak performance, and 3.67 times faster in time-to-solution compared to the SC14 Gordon Bell finalist's state-of-the-art simulation. The method scales up to the full K computer with 663,552 CPU cores with 96.6% sizeup efficiency, enabling solving of a 1.08T DOF problem in 29.7 s per time step. Using such heroic computing, we solved a practical problem involving an area 23.7 times larger than the state-of-the-art, and conducted a comprehensive earthquake simulation by combining earthquake wave propagation analysis and evacuation analysis. Application at such scale is a groundbreaking accomplishment and is expected to change the quality of earthquake disaster estimation and contribute to society.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61
Abstract
This paper presents a new heroic computing method for unstructured, low-order, finite-element, implicit nonlinear wave simulation: 1.97 PFLOPS (18.6% of peak) was attained on the full K computer when solving a 1.08T degrees-of-freedom (DOF) and 0.270T-element problem. This is 40.1 times more DOF and elements, a 2.68-fold improvement in peak performance, and 3.67 times faster in time-to-solution compared to the SC14 Gordon Bell finalist's state-of-the-art simulation. The method scales up to the full K computer with 663,552 CPU cores with 96.6% sizeup efficiency, enabling solving of a 1.08T DOF problem in 29.7 s per time step. Using such heroic computing, we solved a practical problem involving an area 23.7 times larger than the state-of-the-art, and conducted a comprehensive earthquake simulation by combining earthquake wave propagation analysis and evacuation analysis. Application at such scale is a groundbreaking accomplishment and is expected to change the quality of earthquake disaster estimation and contribute to society.