{"title":"rG4detector","authors":"Maor Turner, Mira Barshai, Yaron Orenstein","doi":"10.1145/3535508.3545534","DOIUrl":null,"url":null,"abstract":"RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Thus, researchers would like to know where and when rG4s are formed throughout the transcriptome. Measuring rG4s experimentally is a long and lobarious process, and hence researchers often rely on computational methods to predict the rG4 propensity of a given RNA sequence. However, existing computational methods for rG4 propensity prediction are sub-optimal since they rely on specific sequence features and/or were trained on small datasets and without considering rG4 stability information. Here, we developed rG4detector, a convolutional neural network to predict the rG4 propensity of any given RNA sequence. We demonstrated that rG4detector outperforms existing methods over various transcriptomic datasets. In addition, we used rG4detector to detect potential rG4s in transcriptomic data, and showed that it improves detection performance compared to existing methods. Last, we interrogated rG4detector for the important features it learned and discovered known and novel molecular principles behind rG4 formation. We expect rG4detector to advance future rG4 research by accurate detection and propensity prediction of rG4s. The code, trained models, and processed datasets are publicly available via github.com/OrensteinLab/rG4detector.","PeriodicalId":354504,"journal":{"name":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3535508.3545534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Thus, researchers would like to know where and when rG4s are formed throughout the transcriptome. Measuring rG4s experimentally is a long and lobarious process, and hence researchers often rely on computational methods to predict the rG4 propensity of a given RNA sequence. However, existing computational methods for rG4 propensity prediction are sub-optimal since they rely on specific sequence features and/or were trained on small datasets and without considering rG4 stability information. Here, we developed rG4detector, a convolutional neural network to predict the rG4 propensity of any given RNA sequence. We demonstrated that rG4detector outperforms existing methods over various transcriptomic datasets. In addition, we used rG4detector to detect potential rG4s in transcriptomic data, and showed that it improves detection performance compared to existing methods. Last, we interrogated rG4detector for the important features it learned and discovered known and novel molecular principles behind rG4 formation. We expect rG4detector to advance future rG4 research by accurate detection and propensity prediction of rG4s. The code, trained models, and processed datasets are publicly available via github.com/OrensteinLab/rG4detector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
rG4detector
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining post-pandemic behaviors influencing human mobility trends Geographic ensembles of observations using randomised ensembles of autoregression chains: ensemble methods for spatio-temporal time series forecasting of influenza-like illness Trajectory-based and sound-based medical data clustering Session details: Graphs & networks TopographyNET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1