RACOD

Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Dominic Guri, M. Likhachev, Phillip B. Gibbons
{"title":"RACOD","authors":"Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Dominic Guri, M. Likhachev, Phillip B. Gibbons","doi":"10.1145/3470496.3527383","DOIUrl":null,"url":null,"abstract":"RACOD is an algorithm/hardware co-design for mobile robot path planning. It consists of two main components: CODAcc, a hardware accelerator for collision detection; and RASExp, an algorithm extension for runahead path exploration. CODAcc uses a novel MapReduce-style hardware computational model and massively parallelizes individual collision checks. RASExp predicts future path explorations and proactively computes its collision status ahead of time, thereby overlapping multiple collision detections. By affording multiple cheap CODAcc accelerators and overlapping collision detections using RASExp, RACOD significantly accelerates planning for mobile robots operating in arbitrary environments. Evaluations of popular benchmarks show up to 41.4× (self-driving cars) and 34.3× (pilotless drones) speedup with less than 0.3% area overhead. While the performance is maximized when CODAcc and RASExp are used together, they can also be used individually. To illustrate, we evaluate CODAcc alone in the context of a stationary robotic arm and show that it improves performance by 3.4×--3.8×. Also, we evaluate RASExp alone on commodity many-core CPU and GPU platforms by implementing it purely in software and show that with 32/128 CPU/GPU threads, it accelerates the end-to-end planning time by 8.6×/2.9×.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

RACOD is an algorithm/hardware co-design for mobile robot path planning. It consists of two main components: CODAcc, a hardware accelerator for collision detection; and RASExp, an algorithm extension for runahead path exploration. CODAcc uses a novel MapReduce-style hardware computational model and massively parallelizes individual collision checks. RASExp predicts future path explorations and proactively computes its collision status ahead of time, thereby overlapping multiple collision detections. By affording multiple cheap CODAcc accelerators and overlapping collision detections using RASExp, RACOD significantly accelerates planning for mobile robots operating in arbitrary environments. Evaluations of popular benchmarks show up to 41.4× (self-driving cars) and 34.3× (pilotless drones) speedup with less than 0.3% area overhead. While the performance is maximized when CODAcc and RASExp are used together, they can also be used individually. To illustrate, we evaluate CODAcc alone in the context of a stationary robotic arm and show that it improves performance by 3.4×--3.8×. Also, we evaluate RASExp alone on commodity many-core CPU and GPU platforms by implementing it purely in software and show that with 32/128 CPU/GPU threads, it accelerates the end-to-end planning time by 8.6×/2.9×.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BioHD: an efficient genome sequence search platform using HyperDimensional memorization MeNDA: a near-memory multi-way merge solution for sparse transposition and dataflows Graphite: optimizing graph neural networks on CPUs through cooperative software-hardware techniques INSPIRE: in-storage private information retrieval via protocol and architecture co-design CraterLake: a hardware accelerator for efficient unbounded computation on encrypted data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1