A Tool for Online Experiment-Driven Adaptation

I. Gerostathopoulos, Ali Naci Uysal, C. Prehofer, T. Bures
{"title":"A Tool for Online Experiment-Driven Adaptation","authors":"I. Gerostathopoulos, Ali Naci Uysal, C. Prehofer, T. Bures","doi":"10.1109/FAS-W.2018.00032","DOIUrl":null,"url":null,"abstract":"In this paper, we present Online Experiment-Driven Adaptation (OEDA), a tool for performing end-to-end optimization of a target system abstracted as a black-box by combining statistical and optimization methods and providing statistical guarantees along the optimization process. We present the requirements and architecture of OEDA and describe its built-in optimization process that chains together factorial design, Bayesian optimization, and t-test. OEDA allows the user to create reusable abstractions of systems-to-be-optimized and specify, run and observe the execution of end-to-end experiments. For instance, we support data exchange with common tools like Kafka, MQTT and HTTP. We show the benefits of OEDA in a web server application example. OEDA can be a useful vehicle for research in the area of automated experimentation, an emerging challenge where systems are capable of performing experiments (akin to A/B testing) to themselves in order to self-optimize.","PeriodicalId":164903,"journal":{"name":"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present Online Experiment-Driven Adaptation (OEDA), a tool for performing end-to-end optimization of a target system abstracted as a black-box by combining statistical and optimization methods and providing statistical guarantees along the optimization process. We present the requirements and architecture of OEDA and describe its built-in optimization process that chains together factorial design, Bayesian optimization, and t-test. OEDA allows the user to create reusable abstractions of systems-to-be-optimized and specify, run and observe the execution of end-to-end experiments. For instance, we support data exchange with common tools like Kafka, MQTT and HTTP. We show the benefits of OEDA in a web server application example. OEDA can be a useful vehicle for research in the area of automated experimentation, an emerging challenge where systems are capable of performing experiments (akin to A/B testing) to themselves in order to self-optimize.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线实验驱动适应工具
在本文中,我们提出了在线实验驱动自适应(Online experimental - driven Adaptation, OEDA),这是一种将统计方法和优化方法相结合,对抽象为黑盒的目标系统进行端到端优化的工具,并在优化过程中提供统计保证。我们介绍了OEDA的需求和体系结构,并描述了其内置的优化过程,该过程将析因设计、贝叶斯优化和t检验联系在一起。OEDA允许用户创建待优化系统的可重用抽象,并指定、运行和观察端到端实验的执行。例如,我们支持与Kafka、MQTT和HTTP等常用工具进行数据交换。我们在一个web服务器应用程序示例中展示了OEDA的好处。OEDA可以成为自动化实验领域研究的有用工具,这是一个新兴的挑战,系统能够对自己执行实验(类似于a /B测试)以实现自我优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Self-Adaptive Systems with Hierarchical Decentralised Control DymGPU: Dynamic Memory Management for Sharing GPUs in Virtualized Clouds Reactive and Adaptive Security Monitoring in Cloud Computing Aspects of Measuring and Evaluating the Integration Status of a (Sub-)System at Runtime Efficient Classification of Application Characteristics by Using Hardware Performance Counters with Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1