Robust RGB Image Thresholding with Shannon’s Entropy and Jaya Algorithm

B. Maheswari, N. Mohanapriya, N. S. Madhava Raja
{"title":"Robust RGB Image Thresholding with Shannon’s Entropy and Jaya Algorithm","authors":"B. Maheswari, N. Mohanapriya, N. S. Madhava Raja","doi":"10.1109/ICSCAN.2018.8541205","DOIUrl":null,"url":null,"abstract":"Image thresholding is a common pre-processing procedure implemented in various domains to improve the picture quality. In this work, thresholding of benchmark RGB-scale picture is implemented with the Jaya Algorithm (JA) and Shannon’s Entropy (SE). The investigational work is executed using Matlab7 software on RGB pictures of varied sizes. This work examines the original and the noise stained pictures based on the chosen threshold. In order to assess the performance of JA+SE, Picture-Quality-Measures (PQM) are computed by comparing the original and thresholded pictures. The average outcome confirms that, JA+SE provide better PQM values in both the normal and noise corrupted cases. Hence, this study confirms that, pre-processing with SE helps to attain better values of the error and PSNR values for the considered images of different size and quality.","PeriodicalId":378798,"journal":{"name":"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN.2018.8541205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image thresholding is a common pre-processing procedure implemented in various domains to improve the picture quality. In this work, thresholding of benchmark RGB-scale picture is implemented with the Jaya Algorithm (JA) and Shannon’s Entropy (SE). The investigational work is executed using Matlab7 software on RGB pictures of varied sizes. This work examines the original and the noise stained pictures based on the chosen threshold. In order to assess the performance of JA+SE, Picture-Quality-Measures (PQM) are computed by comparing the original and thresholded pictures. The average outcome confirms that, JA+SE provide better PQM values in both the normal and noise corrupted cases. Hence, this study confirms that, pre-processing with SE helps to attain better values of the error and PSNR values for the considered images of different size and quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Shannon熵和Jaya算法的鲁棒RGB图像阈值分割
图像阈值分割是一种用于提高图像质量的常用预处理方法。本文采用Jaya算法(JA)和Shannon熵(SE)实现了基准rgb尺度图像的阈值分割。研究工作采用Matlab7软件对不同尺寸的RGB图像进行处理。本工作基于所选阈值对原始图像和噪声图像进行检测。为了评估JA+SE的性能,通过比较原始图像和阈值图像来计算图像质量度量(PQM)。平均结果证实,JA+SE在正常和噪声破坏情况下都能提供更好的PQM值。因此,本研究证实,对于考虑的不同尺寸和质量的图像,采用SE预处理有助于获得更好的误差值和PSNR值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improvised Algorithm For Computer Vision Based Cashew Grading System Using Deep CNN Fuzzy Based Active Filter For Power Quality Mitigation Access Level Privacy Protection for Security ANALYSING TWO DIMENSIONAL PROGRESSION OF CRACKS IN BUILDINGS USING SOFTWARE A Survey report of the firefighters on fire hazards of PV fire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1