KernelGPA: A Deformable SLAM Back-end

Fang Bai, A. Bartoli
{"title":"KernelGPA: A Deformable SLAM Back-end","authors":"Fang Bai, A. Bartoli","doi":"10.15607/rss.2022.xviii.002","DOIUrl":null,"url":null,"abstract":"—Simultaneous localization and mapping (SLAM) in the deformable environment has encountered several barricades. One of them is the lack of a global registration technique. Thus current SLAM systems heavily rely on template based methods. We propose KernelGPA, a novel global registration technique to bridge the gap. We define nonrigid transformations using a kernel method, and show that the principal axes of the map can be solved globally in closed-form, up to a global scale ambiguity along each axis. We propose to solve both the global scale ambiguity and rigid poses in a unified optimization framework, yielding a cost that can be readily incorporated in sensor fusion frameworks. We demonstrate the registration performance of KernelGPA using various datasets, with a special focus on computerized tomography (CT) registration. We release our code 1 and data to foster future research in this direction. in all cases, and the CVE-Gfold for most of cases. This clearly shows that","PeriodicalId":340265,"journal":{"name":"Robotics: Science and Systems XVIII","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2022.xviii.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

—Simultaneous localization and mapping (SLAM) in the deformable environment has encountered several barricades. One of them is the lack of a global registration technique. Thus current SLAM systems heavily rely on template based methods. We propose KernelGPA, a novel global registration technique to bridge the gap. We define nonrigid transformations using a kernel method, and show that the principal axes of the map can be solved globally in closed-form, up to a global scale ambiguity along each axis. We propose to solve both the global scale ambiguity and rigid poses in a unified optimization framework, yielding a cost that can be readily incorporated in sensor fusion frameworks. We demonstrate the registration performance of KernelGPA using various datasets, with a special focus on computerized tomography (CT) registration. We release our code 1 and data to foster future research in this direction. in all cases, and the CVE-Gfold for most of cases. This clearly shows that
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核gpa:一个可变形的SLAM后端
在可变形环境中的同步定位和映射(SLAM)遇到了几个障碍。其中之一是缺乏全局注册技术。因此,当前的SLAM系统严重依赖于基于模板的方法。我们提出了一种新的全局配准技术KernelGPA来弥补这一差距。我们使用核方法定义了非刚性变换,并证明了映射的主轴可以以封闭形式全局求解,直至沿每个轴的全局范围模糊。我们建议在统一的优化框架中解决全局范围的模糊性和刚性姿态,从而产生可以很容易地纳入传感器融合框架的成本。我们使用各种数据集演示了KernelGPA的配准性能,特别关注计算机断层扫描(CT)配准。我们发布代码1和数据,以促进这一方向的未来研究。在所有情况下,CVE-Gfold在大多数情况下。这清楚地表明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Underwater Robot-To-Human Communication Via Motion: Implementation and Full-Loop Human Interface Evaluation Meta Value Learning for Fast Policy-Centric Optimal Motion Planning A Learning-based Iterative Control Framework for Controlling a Robot Arm with Pneumatic Artificial Muscles Aerial Layouting: Design and Control of a Compliant and Actuated End-Effector for Precise In-flight Marking on Ceilings Occupancy-SLAM: Simultaneously Optimizing Robot Poses and Continuous Occupancy Map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1