{"title":"Improving ACSTL Iris Segmentation Method","authors":"Cristina M. Noaica","doi":"10.1109/SYNASC.2018.00076","DOIUrl":null,"url":null,"abstract":"ACSTL is a segmentation method that was initially developed for iris images that are captured with an LG2200-iris sensor. ACSTL provided a 0.326 segmentation error on the entire LG2200 dataset, but a much higher error for images from other infrared sensors, such as a close-up camera (CASIA Interval dataset). This paper shows a method to improve ACSTL in terms of both segmentation performance and the average execution time per image. The improvements are brought to the image processing and to the iris boundary selection algorithm of ACSTL.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ACSTL is a segmentation method that was initially developed for iris images that are captured with an LG2200-iris sensor. ACSTL provided a 0.326 segmentation error on the entire LG2200 dataset, but a much higher error for images from other infrared sensors, such as a close-up camera (CASIA Interval dataset). This paper shows a method to improve ACSTL in terms of both segmentation performance and the average execution time per image. The improvements are brought to the image processing and to the iris boundary selection algorithm of ACSTL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进ACSTL虹膜分割方法
ACSTL是一种分割方法,最初是为使用lg2200 -虹膜传感器捕获的虹膜图像而开发的。ACSTL在整个LG2200数据集上提供了0.326的分割误差,但对于来自其他红外传感器的图像,如特写相机(CASIA间隔数据集)的分割误差要高得多。本文给出了一种从分割性能和平均图像执行时间两方面改进ACSTL的方法。对ACSTL的图像处理和虹膜边界选择算法进行了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1