Deep intelligent network for device-free people tracking: WIP abstract

Yang Zhao, Ming-Ching Chang, P. Tu
{"title":"Deep intelligent network for device-free people tracking: WIP abstract","authors":"Yang Zhao, Ming-Ching Chang, P. Tu","doi":"10.1145/3302509.3313312","DOIUrl":null,"url":null,"abstract":"Recent radio frequency (RF) sensing techniques use a network of RF sensors to detect and locate people that do not carry any devices and can operate in non line-of-sight environments. Model-based device-free RF sensing systems use statistical models to quantify human presence and motion based on the received RF signal measurements. However, such methods often require the fine tuning of multiple model-dependent parameters in order to achieve sub meter accuracy. In this work, we propose to use deep neural networks together with visual tracking systems to effectively generate training data so as to learn a general model. Our method can automatically produce human motion and occupancy images from RF sensor network measurements without the need for manual RF model parameter tuning.","PeriodicalId":413733,"journal":{"name":"Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3302509.3313312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recent radio frequency (RF) sensing techniques use a network of RF sensors to detect and locate people that do not carry any devices and can operate in non line-of-sight environments. Model-based device-free RF sensing systems use statistical models to quantify human presence and motion based on the received RF signal measurements. However, such methods often require the fine tuning of multiple model-dependent parameters in order to achieve sub meter accuracy. In this work, we propose to use deep neural networks together with visual tracking systems to effectively generate training data so as to learn a general model. Our method can automatically produce human motion and occupancy images from RF sensor network measurements without the need for manual RF model parameter tuning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无设备人员跟踪的深度智能网络:WIP摘要
最近的射频(RF)传感技术使用射频传感器网络来检测和定位不携带任何设备并且可以在非视线环境中操作的人。基于模型的无设备射频传感系统使用统计模型根据接收到的射频信号测量来量化人的存在和运动。然而,这种方法通常需要对多个模型相关参数进行微调,以达到亚米精度。在这项工作中,我们提出使用深度神经网络与视觉跟踪系统一起有效地生成训练数据,从而学习通用模型。我们的方法可以从射频传感器网络测量中自动生成人体运动和占用图像,而无需手动调整射频模型参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing and mitigating impact of time delay attack: a case study for power grid frequency control Programming event processors with thingflow FPGA-Based amoeba-inspired SAT solver for cyber-physical systems TACAN Robustness evaluation of computer-aided clinical trials for medical devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1