{"title":"Tibetan-Chinese cross language named entity extraction based on comparable corpus and naturally annotated resources","authors":"Yuan Sun, W. Guo, Xiaobing Zhao","doi":"10.1109/CIDM.2014.7008680","DOIUrl":null,"url":null,"abstract":"Tibetan-Chinese named entity extraction can effectively improve the performance of Tibetan-Chinese cross language question answering system, information retrieval, machine translation and other researches. In the condition of no practical Tibetan named entity recognition system and Tibetan-Chinese translation model, this paper proposes a method to extract Tibetan-Chinese entities based on comparable corpus and naturally annotated resources from webs. The main work of this paper is in the following: (1) Tibetan-Chinese comparable corpus construction. (2) Combining sentence length, word matching and boundary term features, using multi-feature fusion algorithm to obtain parallel sentences from comparable corpus. (3) Tibetan-Chinese entity mapping based on the maximum word continuous intersection model of parallel sentence. Finally, the experimental results show that our approach can effectively find Tibetan-Chinese cross language named entity.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tibetan-Chinese named entity extraction can effectively improve the performance of Tibetan-Chinese cross language question answering system, information retrieval, machine translation and other researches. In the condition of no practical Tibetan named entity recognition system and Tibetan-Chinese translation model, this paper proposes a method to extract Tibetan-Chinese entities based on comparable corpus and naturally annotated resources from webs. The main work of this paper is in the following: (1) Tibetan-Chinese comparable corpus construction. (2) Combining sentence length, word matching and boundary term features, using multi-feature fusion algorithm to obtain parallel sentences from comparable corpus. (3) Tibetan-Chinese entity mapping based on the maximum word continuous intersection model of parallel sentence. Finally, the experimental results show that our approach can effectively find Tibetan-Chinese cross language named entity.