Graph Reasoning Networks and Applications

Qingxing Cao, Wentao Wan, Xiaodan Liang, Liang Lin
{"title":"Graph Reasoning Networks and Applications","authors":"Qingxing Cao, Wentao Wan, Xiaodan Liang, Liang Lin","doi":"10.3233/faia210351","DOIUrl":null,"url":null,"abstract":"Despite the significant success in various domains, the data-driven deep neural networks compromise the feature interpretability, lack the global reasoning capability, and can’t incorporate external information crucial for complicated real-world tasks. Since the structured knowledge can provide rich cues to record human observations and commonsense, it is thus desirable to bridge symbolic semantics with learned local feature representations. In this chapter, we review works that incorporate different domain knowledge into the intermediate feature representation.These methods firstly construct a domain-specific graph that represents related human knowledge. Then, they characterize node representations with neural network features and perform graph convolution to enhance these symbolic nodes via the graph neural network(GNN).Lastly, they map the enhanced node feature back into the neural network for further propagation or prediction. Through integrating knowledge graphs into neural networks, one can collaborate feature learning and graph reasoning with the same supervised loss function and achieve a more effective and interpretable way to introduce structure constraints.","PeriodicalId":250200,"journal":{"name":"Neuro-Symbolic Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-Symbolic Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/faia210351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite the significant success in various domains, the data-driven deep neural networks compromise the feature interpretability, lack the global reasoning capability, and can’t incorporate external information crucial for complicated real-world tasks. Since the structured knowledge can provide rich cues to record human observations and commonsense, it is thus desirable to bridge symbolic semantics with learned local feature representations. In this chapter, we review works that incorporate different domain knowledge into the intermediate feature representation.These methods firstly construct a domain-specific graph that represents related human knowledge. Then, they characterize node representations with neural network features and perform graph convolution to enhance these symbolic nodes via the graph neural network(GNN).Lastly, they map the enhanced node feature back into the neural network for further propagation or prediction. Through integrating knowledge graphs into neural networks, one can collaborate feature learning and graph reasoning with the same supervised loss function and achieve a more effective and interpretable way to introduce structure constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图推理网络及其应用
尽管数据驱动的深度神经网络在各个领域取得了显著的成功,但其特征可解释性受到损害,缺乏全局推理能力,并且无法整合复杂的现实世界任务所必需的外部信息。由于结构化知识可以为记录人类观察和常识提供丰富的线索,因此需要将符号语义与学习到的局部特征表示连接起来。在本章中,我们回顾了将不同领域知识纳入中间特征表示的工作。这些方法首先构建一个特定领域的图来表示相关的人类知识。然后,他们用神经网络特征来表征节点表示,并通过图神经网络(GNN)进行图卷积来增强这些符号节点。最后,他们将增强的节点特征映射回神经网络以进一步传播或预测。通过将知识图集成到神经网络中,可以使用相同的监督损失函数协同特征学习和图推理,实现更有效和可解释的方式引入结构约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuro-Symbolic Semantic Reasoning Abductive Learning Graph Reasoning Networks and Applications Neuro-Symbolic Artificial Intelligence: The State of the Art Logic Tensor Networks: Theory and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1