Skin colour based face detection

S. L. Phung, D. Chai, A. Bouzerdoum
{"title":"Skin colour based face detection","authors":"S. L. Phung, D. Chai, A. Bouzerdoum","doi":"10.1109/ANZIIS.2001.974071","DOIUrl":null,"url":null,"abstract":"This paper describes a new approach to face detection. A colour input image is first processed using neural networks to detect skin regions in the image. Each neural network separates skin and non-skin pixels on the basis of chrominance information. The skin-colour classifier employs the committee machine technique, which improves skin colour detection by combining the classification results of a set of multilayer perceptrons (MLPs). The skin colour classifier achieves a classification rate of 84% compared to 81% for the best individual MLP classifier. The output of the committee machine is processed by a 2D smoothing filter before being converted into a binary map using a threshold. Finally, several post-processing techniques based on shape and luminance features are proposed for rejecting non-facial regions.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper describes a new approach to face detection. A colour input image is first processed using neural networks to detect skin regions in the image. Each neural network separates skin and non-skin pixels on the basis of chrominance information. The skin-colour classifier employs the committee machine technique, which improves skin colour detection by combining the classification results of a set of multilayer perceptrons (MLPs). The skin colour classifier achieves a classification rate of 84% compared to 81% for the best individual MLP classifier. The output of the committee machine is processed by a 2D smoothing filter before being converted into a binary map using a threshold. Finally, several post-processing techniques based on shape and luminance features are proposed for rejecting non-facial regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于肤色的人脸检测
本文提出了一种新的人脸检测方法。首先使用神经网络处理颜色输入图像以检测图像中的皮肤区域。每个神经网络在色度信息的基础上分离皮肤和非皮肤像素。肤色分类器采用委员会机技术,该技术通过结合一组多层感知器(mlp)的分类结果来改进肤色检测。肤色分类器的分类率为84%,而最佳个人MLP分类器的分类率为81%。委员会机的输出经过二维平滑滤波器处理,然后使用阈值转换为二值映射。最后,提出了几种基于形状和亮度特征的后处理技术,用于去除非面部区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mammogram JPEG quantisation matrix optimisation for PACS Static image simulation of electronic visual prostheses Ultrasound mediated transfection of HT29 colorectal cancer cells in vitro: preliminary results Gait symmetry quantification during treadmill walking Segmentation of clinical structures for radiotherapy treatment planning: a comparison of two morphological approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1